Effective thermal conductivity estimation using a convolutional neural network and its application in topology optimization  被引量:1

在线阅读下载全文

作  者:Andre Adam Huazhen Fang Xianglin Li 

机构地区:[1]Department of Mechanical Engineering,University of Kansas,1530 W 15th St.,Lawrence,66045,KS,USA [2]Department of Mechanical Engineering and Materials Science,Washington University in St.Louis,One Brookings Drive,St.Louis,63130,MO,USA

出  处:《Energy and AI》2024年第1期236-247,共12页能源与人工智能(英文)

摘  要:Topology optimization of heterogeneous structures can find significant use in a wide range of applications,and its fabrication has been made possible by recent advances in additive manufacturing.However,the optimization procedure is computationally expensive,as each structural update requires the re-evaluation of the properties.The computational time is the major limiting factor in large-scale and complex structural optimization.In this study,a convolutional neural network(CNN)model for predicting effective thermal conductivity inspired by the VGG networks is proposed.Trained using 130,000 unique binary images,the model achieves high predictive accuracy.Specifically,it shows a mean absolute percent error(MAPE)of 0.35%in testing when the thermal conductivity of the solid is ten times larger than the fluid,and when the thermal conductivities assigned are that of aluminum and water,the MAPE is 2.35%.The prediction time is 15 ms for a single image with 128×128 pixels,which is 3 to 5 orders of magnitude faster than a finite volume simulation.When employed in topology optimization,the CNN retains a MAPE between 0.67%and 11.8%for different cases.The CNN model correctly predicts trends in effective thermal conductivity and improves the structure to close proximity of a theoretical maximum in all cases.

关 键 词:Machine learning Effective thermal conductivity Convolutional neural network VGG Numerical heat transfer Topology optimization 

分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象