Identifying the validity domain of machine learning models in building energy systems  

在线阅读下载全文

作  者:Martin Rätz Patrick Henkel Phillip Stoffel Rita Streblow Dirk Müller 

机构地区:[1]RWTH Aachen University,E.ON Energy Research Center,Institute for Energy Efficient Buildings and Indoor Climate,Mathieustraβe 10,Aachen,52074,Germany

出  处:《Energy and AI》2024年第1期328-341,共14页能源与人工智能(英文)

基  金:the financial support by the Federal Ministry for Economic Affairs and Climate Action(BMWK),promotional reference 03EN1066A and 03EN3060D;funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No.101023666.

摘  要:The building sector significantly contributes to climate change.To improve its carbon footprint,applications like model predictive control and predictive maintenance rely on system models.However,the high modeling effort hinders practical application.Machine learning models can significantly reduce this modeling effort.To ensure a machine learning model’s reliability in all operating states,it is essential to know its validity domain.Operating states outside the validity domain might lead to extrapolation,resulting in unpredictable behavior.This paper addresses the challenge of identifying extrapolation in data-driven building energy system models and aims to raise knowledge about it.For that,a novel approach is proposed that calibrates novelty detection algorithms towards the machine learning model.Suitable novelty detection algorithms are identified through a literature review and a benchmark test with 15 candidates.A subset of five algorithms is then evaluated on building energy systems.First,on two-dimensional data,displaying the results with a novel visualization scheme.Then on more complex multi-dimensional use cases.The methodology performs well,and the validity domain could be approximated.The visualization allows for a profound analysis and an improved understanding of the fundamental effects behind a machine learning model’s validity domain and the extrapolation regimes.

关 键 词:Extrapolation detection Validity domain Novelty detection Machine learning Artificial neural network Data-driven model predictive control Building energy systems 

分 类 号:TU11[建筑科学—建筑理论] TP181[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象