CWGAN-GP with residual network model for lithium-ion battery thermal image data expansion with quantitative metrics  

在线阅读下载全文

作  者:Fengshuo Hu Chaoyu Dong Luyu Tian Yunfei Mu Xiaodan Yu Hongjie Jia 

机构地区:[1]School of Electrical and Information Engineering,Tianjin University,Tianjin 300072,China [2]Agency for Science,Technology and Research,Nanyang Technological University,639798,Singapore

出  处:《Energy and AI》2024年第2期14-23,共10页能源与人工智能(英文)

基  金:supported by the project of National Natural Science Foundation of China(U23B6006,52277116).

摘  要:Lithium batteries find extensive applications in energy storage.Temperature is a crucial indicator for assessing the state of lithium-ion batteries,and numerous experiments require thermal images of lithium-ion batteries for research purposes.However,acquiring thermal imaging samples of lithium-ion battery faults is challenging due to factors such as high experimental costs and associated risks.To address this,our study proposes the utilization of a Conditional Wasserstein Generative Adversarial Network with Gradient Penalty and Residual Network(CWGAN-GP with Residual Network)to augment the dataset of thermal images depicting lithium-ion battery faults.We employ various evaluation metrics to quantitatively analyze and compare the generated thermal images of lithium-ion batteries.Subsequently,the expanded dataset,comprising four types of thermal images depicting lithium-ion battery faults,is input into a Mask Region-based Convolutional Neural Network for training.The results demonstrate that the proposed model surpasses both traditional Generative Adversarial Network and Wasserstein Generative Adversarial Network in terms of the quality of generated thermal images of lithium-ion batteries.Moreover,the augmentation of the dataset leads to an improvement in the fault diagnosis accuracy of the Mask Region-based Convolutional Neural Network.

关 键 词:Lithium-ion batteries Generative adversarial network CWGAN-GP 

分 类 号:TM912[电气工程—电力电子与电力传动]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象