检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Mohd Herwan Sulaiman Zuriani Mustaffa
机构地区:[1]Faculty of Electrical&Electronics Engineering Technology,Universiti Malaysia Pahang Al-Sultan Abdullah(UMPSA),26600 Pekan Pahang,Malaysia [2]Faculty of Computing,Universiti Malaysia Pahang Al-Sultan Abdullah(UMPSA),26600 Pekan Pahang,Malaysia
出 处:《Energy and AI》2024年第2期346-362,共17页能源与人工智能(英文)
基 金:supported by the Ministry of Higher Education Malaysia(MOHE)under Fundamental Research Grant Scheme(FRGS/1/2022/ICT04/UMP/02/1);Universiti Malaysia Pahang Al-Sultan Abdullah(UMPSA)under Distinguished Research Grant(#RDU223003).
摘 要:This paper proposes an integration of recent metaheuristic algorithm namely Evolutionary Mating Algorithm (EMA) in optimizing the weights and biases of deep neural networks (DNN) for forecasting the solar power generation. The study employs a Feed Forward Neural Network (FFNN) to forecast AC power output using real solar power plant measurements spanning a 34-day period, recorded at 15-minute intervals. The intricate nonlinear relationship between solar irradiation, ambient temperature, and module temperature is captured for accurate prediction. Additionally, the paper conducts a comprehensive comparison with established algorithms, including Differential Evolution (DE-DNN), Barnacles Mating Optimizer (BMO-DNN), Particle Swarm Optimization (PSO-DNN), Harmony Search Algorithm (HSA-DNN), DNN with Adaptive Moment Estimation optimizer (ADAM) and Nonlinear AutoRegressive with eXogenous inputs (NARX). The experimental results distinctly highlight the exceptional performance of EMA-DNN by attaining the lowest Root Mean Squared Error (RMSE) during testing. This contribution not only advances solar power forecasting methodologies but also underscores the potential of merging metaheuristic algorithms with contemporary neural networks for improved accuracy and reliability.
关 键 词:Deep learning neural networks Evolutionary mating algorithm Feed forward neural networks Metaheuristic Optimizers Solar PV
分 类 号:TM615[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.33