Forecasting solar power generation using evolutionary mating algorithm-deep neural networks  

在线阅读下载全文

作  者:Mohd Herwan Sulaiman Zuriani Mustaffa 

机构地区:[1]Faculty of Electrical&Electronics Engineering Technology,Universiti Malaysia Pahang Al-Sultan Abdullah(UMPSA),26600 Pekan Pahang,Malaysia [2]Faculty of Computing,Universiti Malaysia Pahang Al-Sultan Abdullah(UMPSA),26600 Pekan Pahang,Malaysia

出  处:《Energy and AI》2024年第2期346-362,共17页能源与人工智能(英文)

基  金:supported by the Ministry of Higher Education Malaysia(MOHE)under Fundamental Research Grant Scheme(FRGS/1/2022/ICT04/UMP/02/1);Universiti Malaysia Pahang Al-Sultan Abdullah(UMPSA)under Distinguished Research Grant(#RDU223003).

摘  要:This paper proposes an integration of recent metaheuristic algorithm namely Evolutionary Mating Algorithm (EMA) in optimizing the weights and biases of deep neural networks (DNN) for forecasting the solar power generation. The study employs a Feed Forward Neural Network (FFNN) to forecast AC power output using real solar power plant measurements spanning a 34-day period, recorded at 15-minute intervals. The intricate nonlinear relationship between solar irradiation, ambient temperature, and module temperature is captured for accurate prediction. Additionally, the paper conducts a comprehensive comparison with established algorithms, including Differential Evolution (DE-DNN), Barnacles Mating Optimizer (BMO-DNN), Particle Swarm Optimization (PSO-DNN), Harmony Search Algorithm (HSA-DNN), DNN with Adaptive Moment Estimation optimizer (ADAM) and Nonlinear AutoRegressive with eXogenous inputs (NARX). The experimental results distinctly highlight the exceptional performance of EMA-DNN by attaining the lowest Root Mean Squared Error (RMSE) during testing. This contribution not only advances solar power forecasting methodologies but also underscores the potential of merging metaheuristic algorithms with contemporary neural networks for improved accuracy and reliability.

关 键 词:Deep learning neural networks Evolutionary mating algorithm Feed forward neural networks Metaheuristic Optimizers Solar PV 

分 类 号:TM615[电气工程—电力系统及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象