Neural-based inexact graph de-anonymization  

在线阅读下载全文

作  者:Guangxi Lu Kaiyang Li Xiaotong Wang Ziyue Liu Zhipeng Cai Wei Li 

机构地区:[1]Department of Computer Science,Georgia State University,Atlanta,USA [2]St.George’s School,Vancouer,Canada

出  处:《High-Confidence Computing》2024年第1期52-59,共8页高置信计算(英文)

基  金:supported by the National Science Foundation of U.S.(2011845,2315596 and 2244219).

摘  要:Graph de-anonymization is a technique used to reveal connections between entities in anonymized graphs,which is crucial in detecting malicious activities,network analysis,social network analysis,and more.Despite its paramount importance,conventional methods often grapple with inefficiencies and challenges tied to obtaining accurate query graph data.This paper introduces a neural-based inexact graph de-anonymization,which comprises an embedding phase,a comparison phase,and a matching procedure.The embedding phase uses a graph convolutional network to generate embedding vectors for both the query and anonymized graphs.The comparison phase uses a neural tensor network to ascertain node resemblances.The matching procedure employs a refined greedy algorithm to discern optimal node pairings.Additionally,we comprehensively evaluate its performance via well-conducted experiments on various real datasets.The results demonstrate the effectiveness of our proposed approach in enhancing the efficiency and performance of graph de-anonymization through the use of graph embedding vectors.

关 键 词:Graph de-anonymization Graph convolutional network Neural tensor network 

分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象