检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Tianyou Zhu Shi Liu Bo Li Junjian Liu Pufan Liu Fei Zheng
机构地区:[1]State Grid Corporation of China,Beijing 100031,China
出 处:《High-Confidence Computing》2024年第2期136-144,共9页高置信计算(英文)
基 金:supported by the Science and Technology Program of Big Data Center,State Grid Corporation of China(SGSJ0000YFJS2200094)。
摘 要:Multi-hop reasoning over language or graphs represents a significant challenge in contemporary research,particularly with the reliance on deep neural networks.These networks are integral to text reasoning processes,yet they present challenges in extracting and representing domain or commonsense knowledge,and they often lack robust logical reasoning capabilities.To address these issues,we introduce an innovative text reasoning framework.This framework is grounded in the use of a semantic relation graph and a graph neural network,designed to enhance the model’s ability to encapsulate knowledge and facilitate complex multi-hop reasoning.Our framework operates by extracting knowledge from a broad range of texts.It constructs a semantic relationship graph based on the logical relationships inherent in the reasoning process.Beginning with the core question,the framework methodically deduces key knowledge,using it as a guide to iteratively establish a complete evidence chain,thereby determining the final answer.Leveraging the advanced reasoning capabilities of the graph neural network,this approach is adept at multi-hop logical reasoning.It demonstrates strong performance in tasks like machine reading comprehension and question answering,while also clearly delineating the path of logical reasoning.
关 键 词:Semantic relation graph Multi-hop reasoning Graph neural network
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.90