检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Markus Hofmeister Kok Foong Lee Yi-Kai Tsai Magnus Müller Karthik Nagarajan Sebastian Mosbach Jethro Akroyd Markus Kraft
机构地区:[1]Department of Chemical Engineering and Biotechnology,University of Cambridge,Philippa Fawcett Drive,Cambridge,CB30AS,United Kingdom [2]Cambridge Centre for Advanced Research and Education in Singapore,CARES Ltd.,1 Create Way,CREATE Tower#05-05,138602,Singapore [3]CMCL Innovations,Sheraton House,Cambridge,CB30AX,United Kingdom [4]The Alan Turing Institute,96 Euston Road,London,NW12DB,United Kingdom
出 处:《Energy and AI》2024年第3期29-47,共19页能源与人工智能(英文)
摘 要:This paper presents a knowledge graph-based approach for the dynamic control of a district heating network with integrated emission dispersion modelling. We propose an interoperable and extensible implementation to forecast the anticipated heat demand of a municipal heating network, minimise associated total generation cost based on a previously devised methodology, and couple it with dispersion simulations for induced airborne pollutants to provide automatic insights into air quality implications of various heat sourcing strategies. We create cross-domain interoperability in the nexus of energy and air quality via newly developed ontologies and semantic software agents, which can be chained together via The World Avatar dynamic knowledge graph to resemble the behaviour of complex systems. Furthermore, we integrate the City Energy Analyst into this ecosystem to provide building-level insights into energy demand and renewable generation potential to foster strategic analyses and scenario planning. Underlying calculations use building and weather data from the knowledge graph in place of inherent assumptions in the official software release, facilitating a more data-driven approach. All use cases are implemented for a mid-size town in Germany as a proof-of-concept, and a unified visualisation interface is provided, allowing for the examination of 3D buildings alongside their corresponding energy demand and supply time series, as well as emission dispersion data. With this work, we outline the potential of Semantic Web technologies to connect digital twins for holistic energy modelling in smart cities, thereby addressing the increasing complexity of interconnected energy systems.
关 键 词:Knowledge graph Digital twin Inter operability Energy modelling Emi ssion dispersi on
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.97