检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Tobias Hofmann Jacob Hamar Bastian Mager Simon Erhard Jan Philipp Schmidt
机构地区:[1]Chair of Systems Engineering for Electrical Energy Storage,University of Bayreuth,Weiherstraße 26,Bayreuth,95448,Bavaria,Germany [2]BMW Group,Petuelring 130,Munich,80809,Bavaria,Germany
出 处:《Energy and AI》2024年第3期80-97,共18页能源与人工智能(英文)
摘 要:Data-driven models for battery state estimation require extensive experimental training data,which may not be available or suitable for specific tasks like open-circuit voltage(OCV)reconstruction and subsequent state of health(SOH)estimation.This study addresses this issue by developing a transfer-learning-based OCV reconstruction model using a temporal convolutional long short-term memory(TCN-LSTM)network trained on synthetic data from an automotive nickel cobalt aluminium oxide(NCA)cell generated through a mechanistic model approach.The data consists of voltage curves at constant temperature,C-rates between C/30 to 1C,and a SOH-range from 70%to 100%.The model is refined via Bayesian optimization and then applied to four use cases with reduced experimental nickel manganese cobalt oxide(NMC)cell training data for higher use cases.The TL models’performances are compared with models trained solely on experimental data,focusing on different C-rates and voltage windows.The results demonstrate that the OCV reconstruction mean absolute error(MAE)within the average battery electric vehicle(BEV)home charging window(30%to 85%state of charge(SOC))is less than 22 mV for the first three use cases across all C-rates.The SOH estimated from the reconstructed OCV exhibits an mean absolute percentage error(MAPE)below 2.2%for these cases.The study further investigates the impact of the source domain on TL by incorporating two additional synthetic datasets,a lithium iron phosphate(LFP)cell and an entirely artificial,non-existing,cell,showing that solely the shifting and scaling of gradient changes in the charging curve suffice to transfer knowledge,even between different cell chemistries.A key limitation with respect to extrapolation capability is identified and evidenced in our fourth use case,where the absence of such comprehensive data hindered the TL process.
关 键 词:Lithium-ion battery State of health estimation Transfer learning OCV curve Partial charging Synthetic data
分 类 号:TM912[电气工程—电力电子与电力传动]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.20.238.29