Bayesian ensemble methods for predicting ground deformation due to tunnelling with sparse monitoring data  被引量:2

在线阅读下载全文

作  者:Zilong Zhang Tingting Zhang Xiaozhou Li Daniel Dias 

机构地区:[1]School of Civil Engineering,Central South University,Changsha,Hunan 410075,China [2]Laboratory 3SR,Grenoble Alpes University,CNRS UMR 5521,Grenoble 38000,France

出  处:《Underground Space》2024年第3期79-93,共15页地下空间(英文)

基  金:supported by the China Scholarship Council(Grant No.202206370130);the Fundamental Research Funds for the Central Universities of Central South University(Grant No.2023ZZTS0034)。

摘  要:Numerous analytical models have been developed to predict ground deformations induced by tunneling,which is a critical issue in tunnel engineering.However,the accuracy of these predictions is often limited by errors and uncertainties resulting from model selection and parameter fittings,given the paucity of monitoring data in field settings.This paper proposes a novel approach to estimate tunnelling-induced ground deformations by applying Bayesian model averaging to several representative prediction models.By accounting for both model and parameter uncertainties,this approach enables more realistic predictions of ground deformations than individual models.Specifically,our results indicate that the Gonzalez-Sagaseta model outperforms other models in predicting ground surface settlements,while the Loganathan-Poulos model is most suitable for predicting subsurface vertical and horizontal deformations.Importantly,our analysis reveals that when monitoring data are sparse,model uncertainties may contribute up to 78.7%of the total uncertainties.Thus,obtaining sufficient data for parameter fitting is crucial for accurate predictions.The proposed method in this study offers a more realistic and efficient prediction of tunnelling-induced ground deformations.

关 键 词:Tunnelling-induced ground deformations Sparse data Model uncertainties Bayesian model averaging 

分 类 号:O57[理学—粒子物理与原子核物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象