Exploring the mathematic equations behind the materials science data using interpretable symbolic regression  

在线阅读下载全文

作  者:Guanjie Wang Erpeng Wang Zefeng Li Jian Zhou Zhimei Sun 

机构地区:[1]School of Materials Science and Engineering,Beihang University,Beijing,China [2]School of Integrated Circuit Science and Engineering,Beihang University,Beijing,China

出  处:《Interdisciplinary Materials》2024年第5期637-657,共21页交叉学科材料(英文)

基  金:National Natural Science Foundation of China,Grant/Award Number:52332005;National Key Research and Development Program of China,Grant/Award Number:2022YFB3807200;China Postdoctoral Science Foundation,Grant/Award Number:2022TQ0019。

摘  要:Symbolic regression(SR),exploring mathematical expressions from a given data set to construct an interpretable model,emerges as a powerful computational technique with the potential to transform the“black box”machining learning methods into physical and chemistry interpretable expressions in material science research.In this review,the current advancements in SR are investigated,focusing on the underlying theories,fundamental flowcharts,various techniques,implemented codes,and application fields.More predominantly,the challenging issues and future opportunities in SR that should be overcome to unlock the full potential of SR in material design and research,including graphics processing unit accelera-tion and transfer learning algorithms,the trade-off between expression accuracy and complexity,physical or chemistry interpretable SR with generative large language models,and multimodal SR methods,are discussed.

关 键 词:explainable machine learning material database materials science representation learning symbolic regression 

分 类 号:TB30[一般工业技术—材料科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象