检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Leilei Liu Guoyan Zhao Weizhang Liang Zheng Jian
机构地区:[1]School of Resources and Safety Engineering,Central South University,Changsha 410083,China
出 处:《Underground Space》2024年第4期25-44,共20页地下空间(英文)
基 金:supported by the National Natural Science Foundation of China(Grant No.52204117);the Natural Science Foundation of Hunan Province,China(Grant No.2022JJ40601).
摘 要:The stability of underground entry-type excavations(UETEs)is of paramount importance for ensuring the safety of mining operations.As more engineering cases are accumulated,machine learning(ML)has demonstrated great potential for the stability evaluation of UETEs.In this study,a hybrid stacking ensemble method aggregating support vector machine(SVM),k-nearest neighbor(KNN),decision tree(DT),random forest(RF),multilayer perceptron neural network(MLPNN)and extreme gradient boosting(XGBoost)algorithms was proposed to assess the stability of UETEs.Firstly,a total of 399 historical cases with two indicators were collected from seven mines.Subsequently,to pursue better evaluation performance,the hyperparameters of base learners(SVM,KNN,DT,RF,MLPNN and XGBoost)and meta learner(MLPNN)were tuned by combining a five-fold cross validation(CV)and simulated annealing(SA)approach.Based on the optimal hyperparameters configuration,the stacking ensemble models were constructed using the training set(75%of the data).Finally,the performance of the proposed approach was evaluated by two global metrics(accuracy and Cohen’s Kappa)and three within-class metrics(macro average of the precision,recall and F1-score)on the test set(25%of the data).In addition,the evaluation results were compared with six base learners optimized by SA.The hybrid stacking ensemble algorithm achieved better comprehensive performance with the accuracy,Kappa coefficient,macro average of the precision,recall and F1-score were 0.92,0.851,0.885,0.88 and 0.883,respectively.The rock mass rating(RMR)had the most important influence on evaluation results.Moreover,the critical span graph(CSG)was updated based on the proposed model,representing a significant improvement compared with the previous studies.This study can provide valuable guidance for stability analysis and risk management of UETEs.However,it is necessary to consider more indicators and collect more extensive and balanced dataset to validate the model in future.
关 键 词:Underground entry-type excavations(UETEs) Hybrid stacking ensemble Machine learning Simulated annealing Critical span graph Base and meta learners
分 类 号:U45[建筑科学—桥梁与隧道工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38