检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:崔光曦 杜延磊 杨晓峰 汪胜 徐雪峰 CUI Guangxi;DU Yanlei;YANG Xiaofeng;WANG Sheng;XU Xuefeng(State Key Laboratory of Remote Sensing Science,Aerospace Information Research Institute,Chinese Academy of Sciences,Beijing 100101,China;Key Laboratory of Earth Observation of Hainan Province,Hainan Research Institute,Aerospace Information Research Institute,Chinese Academyof Sciences,Sanya 572029,China;University of Chinese Academy of Sciences,Beijing 100049,China;University of Macao,Macao 999078,China)
机构地区:[1]中国科学院空天信息创新研究院遥感科学国家重点实验室,北京100101 [2]中国科学院空天信息创新研究院海南研究院海南省地球观测重点实验室,三亚572029 [3]中国科学院大学,北京100049 [4]澳门大学,中国澳门999078
出 处:《遥感学报》2024年第9期2335-2347,共13页NATIONAL REMOTE SENSING BULLETIN
基 金:国家自然科学基金(编号:42206180);海南省自然科学基金(编号:422QN348);遥感科学国家重点实验室开放基金(编号:OFSLRSS202009)。
摘 要:海洋内波是一种常见的致灾性中尺度海洋现象,因其对海洋军事和海洋工程等存在巨大威胁而被广泛关注。为了实现合成孔径雷达(SAR)图像海洋内波的准确检测,解决传统检测算法易受斑噪干扰的问题,本文提出了一种基于超像素分割和全局显著性特征的SAR海洋内波检测算法。首先,基于简单线性迭代聚类算法(SLIC)将SAR图像分割成特征均一的超像素;然后,利用超像素的梯度特征、灰度特征及空间特征构建内波显著性特征向量,计算其全局显著性并基于显著度提取内波超像素;最后,根据内波在傅里叶能量谱上的特征对内波区域和非内波区域进行标记并生成标签图像,用于对显著性检测结果进行校正。实验结果表明:本文方法对5景实验数据的内波条纹检测平均F1分数可达到0.884、平均虚警率为0.009,证明了本文方法在不降低SAR图像空间分辨率的条件下可以有效抑制斑噪的影响,实现高分辨率SAR海洋内波条纹的准确检测。Ocean internal waves are a commonly observed catastrophic mesoscale oceanic phenomenon,which attracts great attention due to its considerable threat to marine military and marine engineering.With the rapid development of science and technology,the ocean internal wave remote sensing detection method has attracted increasing attention.At present,remote sensing methods used for internal wave observation can be divided into Synthetic Aperture Radar(SAR),visible light,and infrared by frequency band.Among them,SAR has the advantages of all-day,all-weather,and high-resolution,which is especially well-suited for remote sensing investigation of oceanic internal waves with frequent cloud coverage areas.To achieve accurate detection of ocean internal waves using SAR images and to solve the problem that conventional detection algorithms are susceptible to SAR speckle noise interference,this study proposes a SAR ocean internal wave detection algorithm based on superpixel segmentation and global saliency features.First,the SAR image is segmented into feature-uniform superpixels using the Simple Linear Iterative Clustering(SLIC) algorithm.The SLIC algorithm combines neighboring pixels with similar features into superpixels.The superpixels not only enhance the continuity between the inner wave pixels but also suppress the speckle noise interference.Then,the gradient feature,gray scale feature,and spatial feature of the superpixel are used to construct the internal wave saliency feature vector and calculate its global saliency.On the basis of the saliency,the threshold segmentation algorithm is used to extract the internal wave superpixels.Experiments are conducted on GF-3 and ERS-1 images,which show that the constructed internal wave saliency feature vector is beneficial to detect more internal wave stripes.Finally,the label image indicating the internal wave regions is generated in accordance with the spectral characteristics of internal wave and used to correct the internal wave detection result in previous step.We conducted a
关 键 词:遥感 海洋内波 超像素分割 显著性特征检测 傅里叶能量谱 合成孔径雷达
分 类 号:P2[天文地球—测绘科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.15.140.134