Perturbed initial orbit determination  

在线阅读下载全文

作  者:Alberto Fossà Matteo Losacco Roberto Armellin 

机构地区:[1]Institut Supérieur de l’Aéronautique et de l’Espace,Toulouse,31400,France [2]Te PūnahaĀtea-Space Institute,The University of Auckland,Auckland,1010,New Zealand

出  处:《Astrodynamics》2024年第3期401-416,共16页航天动力学(英文)

基  金:co-funded by the Centre National d’Études Spatiales(CNES)through A.FossàPh.D.program and made use of the CNES orbital propagation tools,including the PACE library.

摘  要:An algorithm for robust initial orbit determination (IOD) under perturbed orbital dynamics is presented. By leveraging map inversion techniques defined in the algebra of Taylor polynomials, this tool returns a highly accurate solution to the IOD problem and estimates a range centered on the aforementioned solution in which the true orbit should lie. To meet the specified accuracy requirements, automatic domain splitting is used to wrap the IOD routines and ensure that the local truncation error, introduced by a polynomial representation of the state estimate, remains below a predefined threshold. The algorithm is presented for three types of ground-based sensors, namely range radars, Doppler-only radars, and optical telescopes, by considering their different constraints in terms of available measurements and sensor noise. Finally, the improvement in performance with respect to a Keplerian-based IOD solution is demonstrated using large-scale numerical simulations over a subset of tracked objects in low Earth orbit.

关 键 词:initial orbit determination(IOD) range radar Doppler radar optical telescope differential algebra(DA) 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象