Information manifold and fault detection of multi-agent systems  

在线阅读下载全文

作  者:Ruotong QU Bin JIANG Yuehua CHENG Xiaodong HAN 

机构地区:[1]College of Automation Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China [2]China Academy of Space Technology,Beijing 100098,China

出  处:《Chinese Journal of Aeronautics》2024年第10期410-423,共14页中国航空学报(英文版)

基  金:supported by the National Natural Science Foundation of China (No. 62020106003);the Natural Science Foundation of Jiangsu Province of China (No. BK20222012);the Natural Science Foundation Integration Project,China (No. U22B6001)

摘  要:With the increase of the number of agents in multi-agent systems and the rapid increase of the complexity of the overall structure of the system,the fault detection and diagnosis work has brought great challenges.Researchers have carried out considerable research work on fault detection and diagnosis of multi-agent systems,but there is no research on fault state estimation and diagnosis based on the information and state of the whole multi-agent system.Based on the global perspective of information geometry theory,this paper presents two new physical quantities of the information manifold of multi-agent systems,as Lagrangian and energy–momentum tensor,to express the state of the overall information of multi-agent systems,and to characterize the energy state and development trend of faults.In this paper,two new physical parameters are introduced into the research of multi-agent fault detection and diagnosis,and the fault state and trend of multi-agent system are evaluated from the global perspective,which provides more comprehensive theoretical support for designing more scientific and reasonable fault diagnosis and fault recovery strategies.Simulation of the application example confirms the competitive performance of the proposed method.

关 键 词:Multi-Agent Systems(MASs) Fault information manifold LAGRANGIAN Fault detection Energy-momentum Tensor 

分 类 号:E92[军事—军事装备学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象