Effective yield strength of a saturated porous medium with a spheroidal meso-pore and spherical micro-pores  

在线阅读下载全文

作  者:W.Q.Shen 

机构地区:[1]College of Architecture and Energy Engineering,Wenzhou University of Technology,Wenzhou,325000,China [2]Department of Civil Engineering,Polytech Lille,University of Lille,France

出  处:《Rock Mechanics Bulletin》2024年第1期97-104,共8页岩石力学通报(英文)

摘  要:A macroscopic yield criterion has been derived in the present work for a double saturated porous medium with a spheroidal pore at the mesocale and spherical pores at the microscale.These two types of pores are well separated at two different scales.The meso spheroidal pore saturated by a pore pressure which is different from the one in the micro spherical pores.A Drucker-Prager type criterion is adopted for the solid phase at the microscopic scale to describe its asymmetric behavior between tension and compression.The methodology to formulate this criterion is based on the limit analysis approach of a spheroidal volume containing a confocal spheroidal pore subjected to a uniform strain rate boundary conditions.The matrix at the mesoscopic scale obeys to a general elliptic yield criterion.Based on a two-step homogenization step,the influence of meso-pore shape(spherical,prolate or oblate),micro-porosity,meso-porosity and the effect of pore pressures at different scales are taken into account explicitly by this macroscopic yield criterion.

关 键 词:Double porous materials Saturated Spheroidal pore Macroscopic yield criterion Plasticity Gurson-type model 

分 类 号:P618.13[天文地球—矿床学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象