检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:雷富强 张博雅 张一帆 刘识灏 Lei Fuqiang;Zhang Boya;Zhang Yifan;Liu Shihao(CSSC(Zhejiang)Ocean Technology Co.,Ltd.,Zhoushan 316000,Zhejiang,China)
机构地区:[1]中船(浙江)海洋科技有限公司,浙江舟山316000
出 处:《计算机应用与软件》2024年第10期227-232,共6页Computer Applications and Software
摘 要:针对疲劳驾驶检测问题,提出一种基于人脸图像特征的眼部疲劳检测方法。利用RetinaFace网络检测面部区域的位置;通过级联回归树(ERT,Ensemble of Regression Trees)算法获取人脸68个关键特征点,同时完成对眼部区域的划分;计算人眼纵横比,判断出睁眼和闭眼行为;根据PERCLOS度量准则实现疲劳状态的检测与判定。在YawDD数据集上的实验结果表明,该方法识别的平均准确率、精确率和召回率分别为90.24%、92.41%和91.90%,能有效识别眼部疲劳状态。Aimed at the problem of fatigue driving detection,a method of eye fatigue detection based on facial image features is proposed.We used the RetinaFace network to detect the facial area.The Ensemble of Regression Trees(ERT)algorithm was used to obtain 68 key feature points,and the eye regions were divided.We calculated the eye aspect ratio to detect the blink behavior.According to the PERCLOS criterion,the detection and determination of the fatigue state was realized.The experimental results on the YawDD dataset show that the average accuracy,precision,and recall rate of this method are 90.24%,92.41%and 91.90%,which can effectively identify eye fatigue.
关 键 词:眼部疲劳检测 RetinaFace网络 级联回归树 人眼纵横比
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7