检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Ashvin Srinivasan Mohsen Amidzadeh Junshan Zhang Olav Tirkkonen
机构地区:[1]Department of Information and Communications Engineering,Aalto University,Espoo 02150,Finland [2]Department of Electrical and Computer Engineering,University of California,Davis,CA 95616,USA
出 处:《Intelligent and Converged Networks》2024年第2期81-99,共19页智能与融合网络(英文)
摘 要:We explore the use of caching both at the network edge and within User Equipment(UE)to alleviate traffic load of wireless networks.We develop a joint cache placement and delivery policy that maximizes the Quality of Service(QoS)while simultaneously minimizing backhaul load and UE power consumption,in the presence of an unknown time-variant file popularity.With file requests in a time slot being affected by download success in the previous slot,the caching system becomes a non-stationary Partial Observable Markov Decision Process(POMDP).We solve the problem in a deep reinforcement learning framework based on the Advantageous Actor-Critic(A2C)algorithm,comparing Feed Forward Neural Networks(FFNN)with a Long Short-Term Memory(LSTM)approach specifically designed to exploit the correlation of file popularity distribution across time slots.Simulation results show that using LSTM-based A2C outperforms FFNN-based A2C in terms of sample efficiency and optimality,demonstrating superior performance for the non-stationary POMDP problem.For caching at the UEs,we provide a distributed algorithm that reaches the objectives dictated by the agent controlling the network,with minimum energy consumption at the UEs,and minimum communication overhead.
关 键 词:wireless caching deep reinforcement learning advantageous actor critic long short term memory non-stationary Partial Observable Markov Decision Process(POMDP)
分 类 号:TP393[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.142.43.181