Edge-assisted indexing for highly dynamic and static data in mixed reality connected autonomous vehicles  

在线阅读下载全文

作  者:Daniel Mawunyo Doe Dawei Chen Kyungtae Han Haoxin Wang Jiang Xie Zhu Han 

机构地区:[1]Department of Electrical and Computer Engineering,University of Houston,Houston,TX 77004,USA [2]InfoTech Labs,Toyota Motor North America Research and Development,Mountain View,CA 94043,USA [3]Department of Computer Science,Georgia State University,Atlanta,GA 30302,USA [4]Department of Electrical and Computer Engineering,University of North Carolina at Charlotte,Charlotte,NC 28223,USA

出  处:《Intelligent and Converged Networks》2024年第2期167-179,共13页智能与融合网络(英文)

摘  要:The integration of Mixed Reality(MR)technology into Autonomous Vehicles(AVs)has ushered in a new era for the automotive industry,offering heightened safety,convenience,and passenger comfort.However,the substantial and varied data generated by MR-Connected AVs(MR-CAVs),encompassing both highly dynamic and static information,presents formidable challenges for efficient data management and retrieval.In this paper,we formulate our indexing problem as a constrained optimization problem,with the aim of maximizing the utility function that represents the overall performance of our indexing system.This optimization problem encompasses multiple decision variables and constraints,rendering it mathematically infeasible to solve directly.Therefore,we propose a heuristic algorithm to address the combinatorial complexity of the problem.Our heuristic indexing algorithm efficiently divides data into highly dynamic and static categories,distributing the index across Roadside Units(RSUs)and optimizing query processing.Our approach takes advantage of the computational capabilities of edge servers or RSUs to perform indexing operations,thereby shifting the burden away from the vehicles themselves.Our algorithm strategically places data in the cache,optimizing cache hit rate and space utilization while reducing latency.The quantitative evaluation demonstrates the superiority of our proposed scheme,with significant reductions in latency(averaging 27%-49.25%),a 30.75%improvement in throughput,a 22.50%enhancement in cache hit rate,and a 32%-50.75%improvement in space utilization compared to baseline schemes.

关 键 词:mixed reality autonomous vehicles data indexing edge computing query optimization 

分 类 号:TP3[自动化与计算机技术—计算机科学与技术] U46[机械工程—车辆工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象