Artificial intelligence enabled smart design and manufacturing of advanced materials:The endless Frontier in AI^(+) era  被引量:1

在线阅读下载全文

作  者:William Yi Wang Suyang Zhang Gaonan Li Jiaqi Lu Yong Ren Xinchao Wang Xingyu Gao Yanjing Su Haifeng Song Jinshan Li 

机构地区:[1]State Key Laboratory of Solidification Processing,Northwestern Polytechnical University,Xi'an,Shaanxi,China [2]Innovation Center,NPU Chongqing,Chongqing,China [3]Institute of Applied Physics and Computational Mathematics,Beijing,China [4]Beijing Advanced Innovation Center for Materials Genome Engineering,University of Science and Technology Beijing,Beijing,China

出  处:《Materials Genome Engineering Advances》2024年第3期18-37,共20页材料基因工程前沿(英文)

基  金:funded by the National Basic Scientific Research Project of China(No.JCKY2020607B003);the Joint Strategy Research&Consulting Project supported by the Chinese Academy of Engineering and National Natural Science Foundation of China(No.2022-ZCQ-03).

摘  要:Future-oriented Science&Technology(S&T)Strategies trigger the innovative developments of advanced materials,providing an envision to the significant progress of leading-/cutting-edge science,engineering,and technologies for the next few decades.Motivated by Made in China 2025 and New Material Power Strategy by 2035,several key viewpoints about automated research workflows for accelerated discovery and smart manufacturing of advanced materials in terms of AI for Science and main respective of big data,database,standards,and ecosys-tems are discussed.Referring to classical toolkits at various spatial and temporal scales,AI-based toolkits and AI-enabled computations for material design are compared,highlighting the dominant role of the AI agent paradigm.Our recent developed ProME platform together with its functions is introduced briefly.A case study of AI agent assistant welding is presented,which is consisted of the large language model,auto-coding via AI agent,image processing,image mosaic,and machine learning for welding defect detection.Finally,more duties are called to educate the next generation workforce with creative minds and skills.It is believed that the transformation of knowledge-enabled data-driven integrated computational material engineering era to AI^(+) era promotes the transformation of smart design and manufacturing paradigm from“designing the materials”to“designing with materials.”

关 键 词:AI agent AI for materials science auto-coding high-throughput investigations WORKFLOW 

分 类 号:TB381[一般工业技术—材料科学与工程] TP18[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象