On the potential of using ensemble learning algorithm to approach the partitioning coefficient(k)value in Scheil-Gulliver equation  

在线阅读下载全文

作  者:Ziyu Li He Tan Anders E.W.Jarfors Jacob Steggo Lucia Lattanzi Per Jansson 

机构地区:[1]Comptech i Skillingaryd AB,Skillingaryd,Sweden [2]Department of Materials and Manufacturing,School of Engineering,Jönköping University,Jönköping,Sweden [3]Department of Computing,School of Engineering,Jönköping University,Jönköping,Sweden

出  处:《Materials Genome Engineering Advances》2024年第3期48-58,共11页材料基因工程前沿(英文)

基  金:funded by KK-Stiftelsen Smart Industry Sweden,with project number 2020-0044.

摘  要:The Scheil-Gulliver equation is essential for assessing solid fractions during alloy solidification in materials science.Despite the prevalent use of the Calculation of Phase Diagrams(CALPHAD)method,its computational intensity and time are limiting the simulation efficiency.Recently,Artificial Intelligence has emerged as a potent tool in materials science,offering robust and reliable predictive modeling capabilities.This study introduces an ensemble-based method that has the potential to enhance the prediction of the partitioning coefficient(k)in the Scheil equation by inputting various alloy compositions.The findings demonstrate that this approach can predict the temperature and solid fraction at the eutectic temperature with an accuracy exceeding 90%,while the accuracy for k prediction surpasses 70%.Additionally,a case study on a commercial alloy revealed that the model's predictions are within a 5℃deviation from experimental results,and the predicted solid fraction at the eutectic temperature is within a 15%difference of the values obtained from the CALPHAD model.

关 键 词:AI application partitioning coefficient scheil-gulliver equation SOLIDIFICATION 

分 类 号:TG14[一般工业技术—材料科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象