检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Jing Lin Tao Ban Tian Li Ye Sun Shenglan Zhou Rushuo Li Yanjing Su Jitti Kasemchainan Hongyi Gao Lei Shi Ge Wang
机构地区:[1]Beijing Key Laboratory of Function Materials for Molecule&Structure Construction,Beijing Advanced Innovation Center for Materials Genome Engineering,School of Materials Science and Engineering,University of Science and Technology Beijing,Beijing,China [2]Beijing Advanced Innovation Center for Big Data and Brain Computing,School of Computer Science and Engineering,Beihang University,Beijing,China [3]Beijing Advanced Innovation Center for Materials Genome Engineering,Institute for Advanced Materials and Technology,School of Materials Science and Engineering,University of Science and Technology Beijing,Beijing,China [4]Department of Chemical Technology,Chulalongkorn University,Bangkok,Thailand
出 处:《Materials Genome Engineering Advances》2024年第3期96-106,共11页材料基因工程前沿(英文)
基 金:supported by the National Key R&D Program of China(Grant No.2021YFB3500700);Beijing Natural Science Foundation(Grant No.L233011);Guangdong Basic and Applied Basic Research Foundation(Grant No.2022A1515010185).
摘 要:Metal-organic frameworks(MOFs),renowned for structural diversity and design flexibility,exhibit potential in catalysis.However,the pursuit of higher catalytic activity through defects often compromises stability,requiring a delicate balance.Traditional trial-and-error method for optimizing synthesis parameters within the complex chemical space is inefficient.Herein,taking the typical MOF UiO-66(Ce)as an illustrative example,a closed loop workflow is built,which integrates ma-chine learning(ML)-assissted prediction,multi-objective optimization(MOO)and experimental preparation to synergistically optimize the defect content and thermal stability of UiO-66(Ce)for efficient hydrogenation of dicyclopentadiene(DCPD).An automatic data extraction program ensures data accuracy,establishing a high-quality database.ML is employed to explore the intricate synthesis-structure-property correlations,enabling precise delineation of pure-phase subspace and accurate predictions of properties.After two iterations,MOO model identifies optimal protocols for high defect content(>40%)and thermal stability(>300℃).The optimized UiO-66(Ce)exhibits superior catalytic performance in hydroge-nation of DCPD,validating the precision and reliability of our methodology.This ML-assisted approach offers a valuable paradigm for solving the trade-off riddle in materials field.
关 键 词:defect content machine learning metal-organic frameworks multi-objective optimization thermal stability
分 类 号:TG14[一般工业技术—材料科学与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.43