Multisensor information fusion:Future of environmental perception in intelligent vehicles  

在线阅读下载全文

作  者:Yongsheng Zhang Chen Tu Kun Gao Liang Wang 

机构地区:[1]CRRC Qishuyan Institute Co.,Ltd.,Changzhou 213011,China [2]School of Information Science and Engineering,Southeast University,Nanjing 211189,China [3]Department of Architecture and Civil Engineering,Chalmers University of Technology,Gothenburg SE-41296,Sweden [4]School of Vehicle and Mobility,Tsinghua University,Beijing 100084,China

出  处:《Journal of Intelligent and Connected Vehicles》2024年第3期163-176,共14页智能网联汽车(英文)

基  金:supported by the National Key R&D Program of China(Grant No.2023YFB4301804);the National Natural Science Foundation of China(Grant Nos.52220105001 and 52221005).

摘  要:As urban transportation increasingly impacts daily life,efficiently utilizing traffic resources and developing public transportation have become crucial for addressing issues such as congestion,frequent accidents,and noise pollution.The rapid advancement of intelligent autonomous driving technologies,particularly environmental perception technologies,offers new directions for solving these problems.This review discusses the application of multisensor information fusion technology in environmental perception for intelligent vehicles,analyzing the components and performance of various sensors and their specific applications in autonomous driving.Through multisensor information fusion,the accuracy of environmental perception is enhanced,optimizing decision support for autonomous driving systems and thereby improving vehicle safety and driving efficiency.This study also discusses the challenges faced by information fusion technology and future development trends,providing references for further research and application in intelligent transportation systems.

关 键 词:intelligent vehicles environmental perception multisensor information fusion autonomous driving traffic safety 

分 类 号:U46[机械工程—车辆工程] TP212[交通运输工程—载运工具运用工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象