检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Jinyi Ma Yiyang Li Jingqi Tu Yiming Zhang Jianliang Ai Yiqun Dong
机构地区:[1]Department of Aeronautics and Astronautics,Fudan University Shanghai 200433,P.R.China
出 处:《Guidance, Navigation and Control》2024年第1期102-120,共19页制导、导航与控制(英文)
基 金:sponsored by the Shanghai Sailing Program under Grant No.20YF1402500;the Shanghai Natural Science Fund under Grant No.22ZR1404500.
摘 要:Accurate dynamics modeling is crucial for the safety and control offixed-wing aircraft under perturbation(e.g.icing/fault).In this work,we propose a physics-informed Neural Ordinary Differential Equation(PI-NODE)-based scheme for aircraft dynamics modeling under icing/fault.First,icing accumulation and control surface faults are considered and injected into the nominal(clean)aircraft dynamics model.Second,the physics knowledge of aircraft dynamics modeling is divided into kinematics and kinetics.The former is universally applicable and borrows directly from the nominal aircraft.The latter kinetics knowledge,which hinges on external forces and moments,is inaccurate and challenging under icing/fault.To address this issue,we employ Neural ODE to compensate for the residual between the aircraft dynamics under icing/fault and the nominal(clean)condition,resulting in a naturally continuous-time modeling approach.In experiments,we benchmark the proposed PI-NODE against three baseline methods in a dedicated flight scenario.Comparative studies validate the higher accuracy and improve the generalization ability of the proposed PI-NODE for aircraft dynamics modeling under icing/fault.
关 键 词:Dynamics modeling physics-informed learning neural networks fixed-wing aircraft icing and fault
分 类 号:V267[航空宇航科学与技术—航空宇航制造工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.112