Development and Implementation of Physics-Informed Neural ODE for Dynamics Modeling of a Fixed-Wing Aircraft Under Icing/Fault  

在线阅读下载全文

作  者:Jinyi Ma Yiyang Li Jingqi Tu Yiming Zhang Jianliang Ai Yiqun Dong 

机构地区:[1]Department of Aeronautics and Astronautics,Fudan University Shanghai 200433,P.R.China

出  处:《Guidance, Navigation and Control》2024年第1期102-120,共19页制导、导航与控制(英文)

基  金:sponsored by the Shanghai Sailing Program under Grant No.20YF1402500;the Shanghai Natural Science Fund under Grant No.22ZR1404500.

摘  要:Accurate dynamics modeling is crucial for the safety and control offixed-wing aircraft under perturbation(e.g.icing/fault).In this work,we propose a physics-informed Neural Ordinary Differential Equation(PI-NODE)-based scheme for aircraft dynamics modeling under icing/fault.First,icing accumulation and control surface faults are considered and injected into the nominal(clean)aircraft dynamics model.Second,the physics knowledge of aircraft dynamics modeling is divided into kinematics and kinetics.The former is universally applicable and borrows directly from the nominal aircraft.The latter kinetics knowledge,which hinges on external forces and moments,is inaccurate and challenging under icing/fault.To address this issue,we employ Neural ODE to compensate for the residual between the aircraft dynamics under icing/fault and the nominal(clean)condition,resulting in a naturally continuous-time modeling approach.In experiments,we benchmark the proposed PI-NODE against three baseline methods in a dedicated flight scenario.Comparative studies validate the higher accuracy and improve the generalization ability of the proposed PI-NODE for aircraft dynamics modeling under icing/fault.

关 键 词:Dynamics modeling physics-informed learning neural networks fixed-wing aircraft icing and fault 

分 类 号:V267[航空宇航科学与技术—航空宇航制造工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象