检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Asmita Veronica Hnin Yin Yin Nyein I-Ming Hsing
出 处:《Materials Futures》2024年第3期95-110,共16页材料展望(英文)
基 金:funding from the Research Grants Council of the Hong Kong SAR Government(GRF#16302723 and ECS#26201323).
摘 要:Neurological injuries and disorders have a significant impact on individuals’quality of life,often resulting in motor and sensory loss.To assess motor performance and monitor neurological disorders,non-invasive techniques such as electroencephalography(EEG)and electromyography(EMG)are commonly used.Traditionally employed wet electrodes with conductive gels are limited by lengthy skin preparation time and allergic reactions.Although dry electrodes and hydrogel-based electrodes can mitigate these issues,their applicability for long-term monitoring is limited.Dry electrodes are susceptible to motion artifacts,whereas hydrogel-based electrodes face challenges related to water-induced instability.Recently,ionogels and eutectogels derived from ionic liquids and deep eutectic solvents have gained immense popularity due to their non-volatility,ionic conductivity,thermal stability,and tunability.Eutectogels,in particular,exhibit superior biocompatibility.These characteristics make them suitable alternatives for the development of safer,robust,and reliable EEG and EMG electrodes.However,research specifically focused on their application for EEG and EMG signal acquisition remains limited.This article explores the electrode requirements and material advancements in EEG and EMG sensing,with a focus on highlighting the benefits that ionogels and eutectogels offer over conventional materials.It sheds light on the current limitations of these materials and proposes areas for further improvement in this field.The potential of these gel-based materials to achieve a seamless interface for high-quality and long-term electrophysiological signal acquisition is emphasized.Leveraging the unique properties of ionogels and eutectogels holds promise for future advancements in EEG and EMG electrode materials,leading to improved monitoring systems and enhanced patient outcomes.
关 键 词:ionogel eutectogel ELECTRODE ELECTROENCEPHALOGRAPHY ELECTROMYOGRAPHY
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7