检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Fei-Teng Wang Xiandong Liu Jun Cheng
机构地区:[1]State Key Laboratory of Physical Chemistry of Solid Surfaces,iChEM,College of Chemistry and Chemical Engineering,Xiamen University,Xiamen 361005,People’s Republic of China [2]State Key Laboratory for Mineral Deposits Research,School of Earth Sciences and Engineering,Nanjing University,Nanjing,Jiangsu 210023,People’s Republic of China [3]Frontiers Science Center for Critical Earth Material Cycling,Nanjing University,Nanjing,Jiangsu 210023,People’s Republic of China [4]Laboratory of AI for Electrochemistry(AI4EC),IKKEM,Xiamen 361005,People’s Republic of China [5]Institute of Artificial Intelligence,Xiamen University,Xiamen 361005,People’s Republic of China
出 处:《Materials Futures》2024年第4期1-10,共10页材料展望(英文)
基 金:the financial support provided by the National Natural Science Foundation of China(Nos.22225302,21991151,21991150,22021001,92161113);the Fundamental Research Funds for the Central Universities(20720220009);Laboratory of AI for Electrochemistry(AI4EC),IKKEM(Grant Nos.RD2023100101 and RD2022070501)。
摘 要:Water molecules at solid–liquid interfaces play a pivotal role in governing interfacial phenomena that underpin electrochemical and catalytic processes.The organization and behavior of these interfacial water molecules can significantly influence the solvation of ions,the adsorption of reactants,and the kinetics of electrochemical reactions.The stepped structure of Pt surfaces can alter the properties of the interfacial water,thereby modulating the interfacial environment and the resulting surface reactivity.Revealing the in situ details of water structures at these stepped Pt/water interfaces is crucial for understanding the fundamental mechanisms that drive diverse applications in energy conversion and material science.In this work,we have developed a machine learning potential for the Pt(211)/water interface and performed machine learning molecular dynamics simulations.Our findings reveal distinct types of chemisorbed and physisorbed water molecules within the adsorbed layer.Importantly,we identified three unique water pairs that were not observed in the basal plane/water interfaces,which may serve as key precursors for water dissociation.These interfacial water structures contribute to the anisotropic dynamics of the adsorbed water layer.Our study provides molecular-level insights into the anisotropic nature of water behavior at stepped Pt/water interfaces,which can influence the reorientation and distribution of intermediates,molecules,and ions—crucial aspects for understanding electrochemical and catalytic processes.
关 键 词:machine learning molecular dynamics stepped Pt/water interfaces anisotropic water dynamics
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.116.42.179