面向缪子透射成像的BCD-NES算法  

BCD-NES algorithm for muon transmission imaging

在线阅读下载全文

作  者:金龙[1,2] 高金磊 刘军涛 刘志毅 JIN Long;GAO Jin-lei;LIU Jun-tao;LIU Zhi-yi(Frontier Science Center for Rare Isotopes,Lanzhou University,Lanzhou 730000,China;School of Information Science and Engineering,Lanzhou University,Lanzhou 730000,China;School of Nuclear Science and Technology,Lanzhou University,Lanzhou 730000,China)

机构地区:[1]兰州大学稀有同位素前沿科学中心,兰州730000 [2]兰州大学信息科学与工程学院,兰州730000 [3]兰州大学核科学与技术学院,兰州730000

出  处:《兰州大学学报(自然科学版)》2024年第5期629-636,644,共9页Journal of Lanzhou University(Natural Sciences)

基  金:国家自然科学基金面上项目(11975115,62176109);中央高校基本科研业务费专项资金(LZUJBKY-2023-CT05,LZU JBKY-2023-EY07,LZUJBKY-2023-STLT01);中央引导地方科技发展资金项目(YDZX20216200001297)。

摘  要:针对大规模缪子透射成像场景,提出一种基于块坐标下降(BCD)的缪子透射成像模型.设计具有抗噪能力的牛顿误差累积(NES)算法对该模型进行求解,构建一种面向缪子透射成像的BCDNES算法.该算法在求解缪子透射成像问题时能够避免对大规模优化问题的直接求解,显著降低计算复杂度和内存资源占用.仿真与实验结果表明,在有噪声和无噪声情形下,该算法均能有效实现对待测物体成像,还能避免实际应用中的异常体变形问题,弥补传统成像方法的不足.For large-scale muon transmission imaging scenarios,a block coordinate descent(BCD)based muon transmission imaging model was proposed,and a noise-resistant Newton error summation(NES)method designed to solve the proposed model in order to construct a muon transmission imaging model.BCD-NES method for muon transmission imaging was constructed.The algorithm significantly reduced the computational complexity and memory resource consumption by avoiding the direct solution of the large-scale optimization problem when solving the muon transmission imaging problem.Simulation and experimental results showed that the proposed algorithm could effectively realize the imaging of the object to be measured both with and without noise interference,and it could avoid the problem of anomalous body deformation in practical applications and make up for the shortcomings of traditional imaging methods.

关 键 词:缪子透射成像 块坐标下降 牛顿误差累积法 

分 类 号:TP3-05[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象