数字预失真系统整数时延估计方法研究  

Research on integer time delay estimation method of digital predistortion system

在线阅读下载全文

作  者:王静妍 吴华兵[1,3] 马红皎[1,3] WANG Jing-yan;WU Hua-bing;MA Hong-jiao(National Time Service Center,Chinese Academy of Sciences,Xi’an 710600,China;School of Integrated Circuits,University of Chinese Academy of Sciences,Beijing 101047,China;Key Laboratory of Time Reference and Applications,Chinese Academy of Sciences,Xi’an 710600,China)

机构地区:[1]中国科学院国家授时中心,西安710600 [2]中国科学院大学集成电路学院,北京101047 [3]时间基准及应用重点实验室(中国科学院),西安710600

出  处:《时间频率学报》2024年第3期180-191,共12页Journal of Time and Frequency

基  金:中国科学院青年创新促进会优秀会员项目(Y2023109)。

摘  要:在数字预失真系统中,相关检测法是常用的时延估计算法。为了降低相关函数对噪声的敏感度,减少数字预失真系统时间延迟估计误差,将希尔伯特差值法和不同加权函数的广义相关时延估计算法相结合,并通过仿真比较,选取时延估计性能较好的基于CC(cross correlation)加权的广义相关希尔伯特差值算法用于数字预失真系统的整数时延估计。仿真结果表明:基于CC加权的广义相关希尔伯特差值算法用时较少,受噪声影响较小,时延估计性能较好,能有效降低时间延迟估计误差,提高系统性能,有利于实际应用。In digital predistortion systems,correlation detection method is a commonly used time delay estimation algorithm.In order to reduce the sensitivity of the correlation function to noise and reduce the time delay estimation error of the digital predistortion system,this paper combines the Hilbert interpolation method with the generalized cross correlation time delay estimation algorithm with different weighting functions,and selects generalized correlation Hilbert difference algorithm based on CC weighting with better time delay estimation performance for integer time delay estimation of digital predistortion system through simulation comparison.The simulation results show that the generalized cross correlation Hilbert difference algorithm based on CC weighting takes less time,is less affected by noise,and has better time delay estimation performance,which can effectively reduce the time delay estimation error,improve system performance,and is good for practical applications.

关 键 词:时延估计 广义互相关 希尔伯特差值 数字预失真 

分 类 号:TN722.75[电子电信—电路与系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象