Energy characterization of forced ventilated Photovoltaic-DSF system in hot summer of composite climate  

在线阅读下载全文

作  者:Sajan Preet Sanjay Mathur Jyotirmay Mathur Manoj Kumar Sharma Amartya Chowdhury 

机构地区:[1]School of Built Environment,University of Reading,United Kingdom [2]Centre for Energy and Environment,Malaviya National Institute of Technology,JLN Marg,Jaipur,302017,India

出  处:《Energy and Built Environment》2024年第5期704-718,共15页能源与人工环境(英文)

基  金:supported by a DST project named“Development and performance analysis of Semi-Transparent Solar Photovoltaic double pane Window/Facade system”funded by the Department of Science and Technology,Government of India (TMD/CERI/BEE/2016/070(G)).

摘  要:Performance of Photovoltaic-double skin façade(Photovoltaic-DSF)system in summer has been critical.Owing to high solar ingress,cooling requirement of a building significantly increases.Photovoltaic-DSF system provides a shield and controls the heat gain through fenestration in the interior spaces.In the present article,mathematical correlations are developed for energy characterization of forced-ventilated Photovoltaic-DSF system in India’s hot summer zone i.e.Jaipur.The Photovoltaic-DSF system has been installed and monitored for Jaipur’s summer months(May to July).L25 Orthogonal array of design parameters(air cavity thickness,air velocity,and PV panel’s transparency)and their respective levels have been developed using Taguchi design to perform experiments.Based on experimental results,multiple linear regression has been used to forecast solar heat gain coefficient,PVs electrical power and daylighting illuminance indoors as function of design factors.The statistical significance of mathematical relationships is sorted by variance analysis,which is found to be in good accord with field measurements(R2>0.90).The proposed correlations are pragmatic in designing Photovoltaic-DSF systems for hot summer conditions.The Photovoltaic-DSF system with 30%transmittance and air velocity of 5 metres per second in 200 mm air cavity thickness achieved maximum energy performance in hot summers.

关 键 词:Photovoltaic double-skin façade Taguchi method Forced ventilation Net energy consumption Overall energy performance 

分 类 号:TU834[建筑科学—供热、供燃气、通风及空调工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象