Deep learning-based approaches for myocardial infarction detection:A comprehensive review recent advances and emerging challenges  

在线阅读下载全文

作  者:Elshafey Radwa Hamila Ridha Bensaali Faycal 

机构地区:[1]Department of Electrical Engineering,Qatar University,Doha,Qatar

出  处:《Medicine in Novel Technology and Devices》2024年第3期32-43,共12页医学中新技术与新装备(英文)

摘  要:Myocardial infarction(MI)is a severe heart disease requiring immediate and accurate detection for effective treatment.Deep learning(DL)algorithms have recently shown promise in enhancing MI diagnostic accuracy from electrocardiography(ECG)and echocardiogram(ECHO).This review presents a comprehensive literature overview focusing on recent innovative research on DL algorithms in ECG and ECHO analysis for MI identification.We examined relevant studies employing DL models,analyzing datasets,model architectures,preprocessing approaches,and performance measures.The findings reveal that DL-based algorithms substantially improve MI detection in terms of accuracy,sensitivity,specificity,and overall diagnostic performance.This is crucial for quicker,more reliable diagnoses and reducing the risk of complications.DL-based ECG and ECHO analyses emerge as pivotal tools for early and efficient MI identification.This review contributes to understanding the latest DL advancements in ECG and ECHO analysis for MI diagnosis,offering important directions for future research.

关 键 词:Deep learning DL ECG ECHO ECHOCARDIOGRAM ELECTROCARDIOGRAPH MI Myocardial infarction 

分 类 号:R542.22[医药卫生—心血管疾病]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象