Bilinear Pseudo-Differential Operator and Its Commutator on Generalized Fractional Weighted Morrey Spaces  

在线阅读下载全文

作  者:Guanghui Lu Shuangping Tao 

机构地区:[1]College of Mathematics and Statistics,Northwest Normal University,Lanzhou 730070,Gansu,China

出  处:《Analysis in Theory and Applications》2024年第1期92-110,共19页分析理论与应用(英文刊)

基  金:supported by the National Natural Science Foundation of China(Grant No.12201500);the Science Foundation for Youths of Gansu Province(Grant No.22JR5RA173);the Young Teachers’Scientific Research Ability Promotion Project of Northwest Normal University(Grant No.NWNU-LKQN2020-07).

摘  要:The aim of this paper is to establish the boundedness of bilinear pseudodifferential operator T_(σ) and its commutator[b_(1),b_(2),T_(σ)]generated by T_(σ) and b_(1),b_(2) BMO(R^(n))on generalized fractional weighted Morrey spaces L^(p,η,φ)(w).Under assumption that a weight satisfies a certain condition,the authors prove that Ts is bounded from products of spaces L^(p1,η1,φ)(w1)L^(p2,η2,φ)(w2)into spaces L^(p,η,φ)(w),where w=(w_(1),w_(2)) A_(P),P=(p1,p2),η=η1+η2 and 1/p=1/p_(1)+1/p_(2) with p_(1),p_(2)(1,∞).Furthermore,the authors show that the[b1,b2,T_(σ)]is bounded from products of generalized fractional Morrey spaces L^(p1,η1,φ)(R^(n))L^(p2,η2,φ)(R^(n))into L^(p,η,φ)(R^(n)).As corollaries,the boundedness of the T_(σ) and[b_(1),b_(2),T_(σ)]on generalized weighted Morrey spaces L^(p,φ)(w)and on generalized Morrey spaces L^(p,φ)(R^(n))is also obtained.

关 键 词:Generalized fractional weighted Morrey space bilinear pseudo-differential operator COMMUTATOR space BMO(R^(n)) 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象