A Comprehensive Descriptor for Understanding High-Shell Heteroatom-Tuned Oxygen Reduction Reaction Activity on Diatomic FeCoN_(6)Sites  被引量:1

在线阅读下载全文

作  者:Xinyi Li Dongxu Jiao Xiao Zhao 

机构地区:[1]Key Laboratory of Automobile Materials of MOE,School of Materials Science and Engineering,Jilin University,Changchun 130012

出  处:《Renewables》2024年第4期242-249,共8页可再生能源(英文)

基  金:supported by the Jilin Province Science and Technology Development Project(Grant Numbers:YDZJ202401329ZYTS);the Fundamental Research Funds for the Central Universities.

摘  要:Diatomic catalysts as a class of emerging non-noble oxygen reduction reaction(ORR)catalysts show superior activity over their single-atom counterparts.However,the strategies to further enhance their performance remain few and only involve tuning the first-shell coordination environment.Herein we demonstrate the introduction of high-shell heteroatoms(B,O,F,P,and S)around diatomic FeCoN6 sites(HSHA-FeCoN_(6))that results in superior ORR performance over unmodified FeCoN6 ones.Particularly,P-FeCoN_(6) possesses a low ORR overpotential of 0.32 V and a high stability substantiated by calculating formation energy,the dissolution potential of FeCoN_(6),and ab initio molecular dynamics simulations.Machine learning is utilized to understand the underlying descriptor and reveals that the single descriptor insufficiently explains activity trends,necessitating a comprehensive descriptor(Φ)that comprises the average distance between heteroatoms and active center(d)and the adsorption energy of OH*(ΔG_(OH)*).Our work provides a fundamental understanding of high-shell coordination atoms for fine regulation of active centers and guide to the rational design of efficient diatomic ORR catalysts.

关 键 词:oxygen reduction reaction dual-atom catalysts density functional theory machine learning comprehensive descriptors 

分 类 号:O62[理学—有机化学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象