基于BIM和NSGA-Ⅲ的超高层建筑施工进度多目标优化研究  

Multi-Objective Optimization of Construction Schedule of Super High-Rise Building Based on BIM and NSGA-III

在线阅读下载全文

作  者:黄锦庭 肖仲华 张立茂[1] HUANG Jinting;XIAO Zhonghua;ZHANG Limao(School of Civil and Hydraulic Engineering,Huazhong University of Science and Technology,Wuhan 430074,China;Hubei United Investment Group Co.,Ltd.,Wuhan 430076,China)

机构地区:[1]华中科技大学土木与水利工程学院,湖北武汉430074 [2]湖北联投集团有限公司,湖北武汉430076

出  处:《工程管理学报》2024年第5期111-117,共7页Journal of Engineering Management

基  金:国家自然科学基金面上项目(72271101)。

摘  要:基于BIM与NSGA-Ⅲ算法优化框架,结合目标控制优化机制,构建了BIM和遗传算法的高层标准层施工考虑工前和施工阶段延误场景下的两阶段优化模型,解决了超高层建筑工程信息采集、进度-成本-资源需求均衡目标评估分析和施工优化决策等关键技术问题。基于NSGA-Ⅲ算法对模型求解获帕累托前沿解集,后采用优劣解距离法(TOPSIS)获得目标值和工序时间参数部署的最优解。并在实际案例中验证了其可行性和有效性,为科学动态的管理提供决策支撑和算法依据。该模型的应用可以提高超高层施工进度动态优化决策能力,促进施工过程面向智能化、数据化和科学决策化。This paper proposes a two-stage optimization model based on integration of BIM and NSGA-III algorithm.Theoptimization model addressed key technical issues such as information collection in high-rise building projects,evaluation andanalysis of progress-cost-resource balance objectives,and construction optimization decisions considering pre-construction andconstruction phase delays.The NSGA-III algorithm was employed to obtain the Pareto front solutions,and the TOPSIS method wassubsequently utilized to determine the optimal solution for performance objectives and deployment of activities duration.Thefeasibility and effectiveness of the proposed model were validated through practical case studies,offering decision support and analgorithmic foundation for scientifically adjusting construction schedules under delays.The application of this model enhanced thecapability of dynamic optimization decision-making in construction progress management,thereby promoting intelligent,data-driven,and scientifically-based decision-making in high-rise building construction.

关 键 词:超高层建筑 BIM 施工进度 NSGA-Ⅲ 多目标优化 工期延误 

分 类 号:TU723[建筑科学—建筑技术科学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象