基于轻量级神经网络的特发性肌炎超声图像分类  

A lightweight convolutional neural network for myositis classification from muscle ultrasound images

在线阅读下载全文

作  者:谭浩 郎恂 王涛 何冰冰 李支尧[2] 卢宇 张榆锋[1] TAN Hao;LANG Xun;WANG Tao;HE Bingbing;LI Zhiyao;LU Yu;ZHANG Yufeng(School of Information Science and Engineering,Yunnan University,Kunming 650504,P.R.China;Third Affiliated Hospital of Kunming Medical University,Kunming 650118,P.R.China)

机构地区:[1]云南大学信息学院,昆明650504 [2]昆明医科大学第三附属医院超声科,昆明650118

出  处:《生物医学工程学杂志》2024年第5期895-902,共8页Journal of Biomedical Engineering

基  金:国家自然科学基金资助项目(62201495);云南省基础研究计划项目(202301AT070277);云南省基础研究计划项目(202301AU070187)。

摘  要:现有肌炎超声图像的分类方法存在分类性能差或计算成本高的问题。针对上述问题,本文提出了一种基于软阈值注意力机制的轻量级神经网络。该网络的主干采用深度可分离卷积与常规卷积搭建,通过软阈值注意力机制自适应去除冗余特征,有效捕获关键特征,从而提高分类表现。与目前分类正确率最高的双分支特征融合肌炎分类网络相比,本文提出网络的分类正确率提高了5.9%,达到了96.1%,且其计算量仅为现有方法的0.25%。因此,该网络能以较低的存储与计算成本为医生提供更准确的辅助诊断结果,具有较强的实用价值。Existing classification methods for myositis ultrasound images have problems of poor classification performance or high computational cost.Motivated by this difficulty,a lightweight neural network based on a soft threshold attention mechanism is proposed to cater for a better IIMs classification.The proposed network was constructed by alternately using depthwise separable convolution(DSC)and conventional convolution(CConv).Moreover,a soft threshold attention mechanism was leveraged to enhance the extraction capabilities of key features.Compared with the current dual-branch feature fusion myositis classification network with the highest classification accuracy,the classification accuracy of the network proposed in this paper increased by 5.9%,reaching 96.1%,and its computational complexity was only 0.25%of the existing method.The obtained results support that the proposed method can provide physicians with more accurate classification results at a lower computational cost,thereby greatly assisting them in their clinical diagnosis.

关 键 词:特发性肌炎 注意力机制 轻量级神经网络 超声图像 

分 类 号:TP183[自动化与计算机技术—控制理论与控制工程] TP391.41[自动化与计算机技术—控制科学与工程] R685.2[医药卫生—骨科学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象