机车轮辋缺陷相控阵超声检测的POD分析  

POD analysis of phased array ultrasonic detection for wheel rim of locomotives

在线阅读下载全文

作  者:王善鸿 WANG Shanhong(China Railway Qinghai Tibet Group Co.,Ltd.,Xining 810000,China)

机构地区:[1]中国铁路青藏集团有限公司,西宁810000

出  处:《无损检测》2024年第10期65-69,共5页Nondestructive Testing

摘  要:车轮是列车关键的承载部位,轮辋周向及径向裂纹的存在可能对行车安全造成影响。当前在役机车车轮主要采用常规超声检测技术进行无损检测,存在入射角度单一,难以接收部分自然裂纹的反射回波等问题。为解决这些问题,结合现有机车无损检测工艺,利用数字模拟的方法,研究了当前常规检测角度对不同走向缺陷检出率(POD)的影响,并结合相控阵超声检测多角度扫查的特点,说明了检测角度在提高机车轮辋缺陷检出率中的作用。结果表明,相控阵超声检测利用了相控阵声束偏转优势,采用多个角度对检测范围进行交叉覆盖,对不同取向的缺陷均有较好的检测效果,缺陷检出率比常规超声检测的高;相控阵超声的优势主要体现在对缺陷走向的良好适应性以及对微小缺陷的高检出率上。The wheels are the key load-bearing parts of the train,and the presence of circumferential and radial cracks on the wheel rims may have an impact on train safety.At present,conventional ultrasonic testing technology is mainly used for detecting the wheels of locomotives in service,which has problems such as a single incident angle and difficulty in receiving reflected echoes from natural cracks.To solve these problems,in this paper,combining existing locomotive flaw detection technology,digital simulation method was used to study the influence of current conventional detection angles on probability of detection(POD)of defects in different directions.Combined with the multi angle scanning characteristics of phased array ultrasonic testing,it showed the role of detection angles in improving defect detection rate in locomotive wheel rim flaw detection.The results showed that phased array ultrasonic testing utilized the advantage of phased array beam deflection and uses multiple angles to cross cover the detection range.Defects with different orientations had good detection effects,and the defect detection rate was higher than that of conventional ultrasonic testing.The advantages of phased array ultrasonic testing mainly lay in its good adaptability to defect direction and high detection rate for small defects.

关 键 词:机车 轮辋 相控阵超声检测 检出率 

分 类 号:TG115.28[金属学及工艺—物理冶金]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象