Quantitative Mapping of Transient Thermodynamic States in Ultrafast Laser Nanostructuring of Quartz  

在线阅读下载全文

作  者:H.D.Nguyen A.Tsaturyan S.Sao Joao R.Dwivedi A.Melkonyan C.D’Amico E.Kachan J.P.Colombier G.Kermouche R.Stoian 

机构地区:[1]Laboratoire Hubert Curien,UMR 5516 CNRS,Universite Jean Monnet,42000 Saint Etienne,France [2]Laboratoire George Friedel,UMR 5307 CNRS,Ecole des Mines de Saint Etienne,42000 Saint Etienne,France

出  处:《Ultrafast Science》2024年第2期9-18,共10页超快科学(英文)

基  金:funded by a public grant from the French National Research Agency(ANR)under the“France 2030”investment plan,with the reference EUR MANUTECH SLEIGHT-ANR-17-EURE-0026;funded by the ANR grants ANR-19-CE30-0036 and ANR-21-CE08-0005;support from the Jean Monnet University under its research supporting actions plan.Numerical calculations have been performed using HPC resources from GENCI-TGCC,CINES(Project gen7041)。

摘  要:Understanding material structural reaction to light is of utmost importance to advance processing resolution in ultrafast laser volume structuring into the nanoscale.Selective thermodynamic pathways are required to quench energy transport in the most rapid manner and to confine the process to nanometer lengths,bypassing optical resolution.Quantifying material dynamics under confinement,with in situ access to transient local temperature and density parameters,thus becomes key in understanding the process.We report in situ reconstruction of thermodynamic states over the entire matter relaxation path in bulkα-quartz irradiated by ultrafast nondiffractive laser beams using time-resolved qualitative and quantitative optical phase microscopy.Thermooptic dynamics indicate rapid spatially confined crystalline-to-amorphous transition to a hot dense fused silica form.Densification exceeds 20%and the matrix temperature rises to more than 2,000 K in the first nanosecond.This structural state relaxes in hundreds of nanoseconds.The dispersion and time design of the optical beam to picosecond durations increases the spatial confinement and triggers an extreme nanostructuring process based on nanocavitation that occurs within the amorphizing material,where the low-viscosity phase lowers the mechanical requirements for the process.Processing feature scales of less than a tenth of the optical wavelength are obtained in the volume.This allows for structural and morphological nanoscale material features under 3D confinement that can engineer optical materials.

关 键 词:QUARTZ hundreds qualitative 

分 类 号:TN24[电子电信—物理电子学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象