检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:董丙冰 吴信东[1,2] DONG Bingbing;WU Xindong(Key Laboratory of Knowledge Engineering with Big Data of Ministry of Education of China,Hefei University of Technology,Hefei 230009;School of Computer Science and Information Engineering,Hefei University of Technology,Hefei 230601)
机构地区:[1]合肥工业大学大数据知识工程教育部重点实验室,合肥230009 [2]合肥工业大学计算机与信息学院,合肥230601
出 处:《模式识别与人工智能》2024年第9期798-810,共13页Pattern Recognition and Artificial Intelligence
基 金:国家自然科学基金项目(No.62120106008)资助。
摘 要:点击诱饵的主要目的是通过引导用户点击链接以增加页面浏览量和广告收入.点击诱饵的内容往往具有低质量、误导性或虚假性的特征,对用户产生潜在不利影响.现有的基于预训练语言模型的提示学习方法依赖外部开放知识库以检测点击诱饵,不仅性能受制于外部知识库的质量和可用性,而且不可避免地导致查询和响应的延迟.为此,文中提出基于内部知识扩展的软提示学习点击诱饵检测方法,从训练数据集本身提取扩展词,同时采用层次聚类和优化策略,在提示学习中对获得的扩展词进行微调,避免从外部知识库检索知识.此外,采用软提示学习可获得适合特定文本类型的最佳提示,避免手工模板带来的偏差.在少样本场景下,尽管文中方法只基于内部知识进行扩展,但在三个公开的点击诱饵数据集上可以以较少的时间取得较优的检测效果.The main purpose of clickbait is to increase page views and advertising revenues by enticing users to click on bait links.The content of clickbait is often characterized by low-quality,misleading or false information,and this potentially engenders negative effects on users.Existing prompt learning methods based on pre-trained language models are reliant on external open knowledge bases to detect clickbait.These methods not only limit model performance due to the quality and availability of external knowledge bases,but also inevitably lead to delays in queries and responses.To address this issue,a soft prompt learning method with internal knowledge expansion for clickbait detection(SPCD_IE)is proposed in this paper.Expansion words are extracted from the training dataset,while hierarchical clustering and optimization strategies are employed to fine-tune the obtained expansion words in prompt learning,and the necessity of knowledge retrieval from external knowledge bases is avoided.Moreover,soft prompt learning is utilized to obtain the best prompts suitable for specific text types,preventing biases introduced by manual templates.Although SPCD_IE expands solely based on internal knowledge in few-shot scenarios,experimental results show it achieves better detection performance on three public clickbait datasets in less time.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.70