A Task Offloading Strategy Based on Multi-Agent Deep Reinforcement Learning for Offshore Wind Farm Scenarios  

在线阅读下载全文

作  者:Zeshuang Song Xiao Wang Qing Wu Yanting Tao Linghua Xu Yaohua Yin Jianguo Yan 

机构地区:[1]Department of Electrical Engineering,Guizhou University,Guiyang,550025,China [2]Powerchina Guiyang Engineering Corporation Limited,Guiyang,550081,China [3]Powerchina Guizhou Engineering Co.,Ltd.,Guiyang,550001,China

出  处:《Computers, Materials & Continua》2024年第10期985-1008,共24页计算机、材料和连续体(英文)

基  金:supported in part by the National Natural Science Foundation of China under grant 61861007;the Guizhou Province Science and Technology Planning Project ZK[2021]303;the Guizhou Province Science Technology Support Plan under grant[2022]264,[2023]096,[2023]409 and[2023]412;the Science Technology Project of POWERCHINA Guizhou Engineering Co.,Ltd.(DJ-ZDXM-2022-44);the Project of POWERCHINA Guiyang Engineering Corporation Limited(YJ2022-12).

摘  要:This research is the first application of Unmanned Aerial Vehicles(UAVs)equipped with Multi-access Edge Computing(MEC)servers to offshore wind farms,providing a new task offloading solution to address the challenge of scarce edge servers in offshore wind farms.The proposed strategy is to offload the computational tasks in this scenario to other MEC servers and compute them proportionally,which effectively reduces the computational pressure on local MEC servers when wind turbine data are abnormal.Finally,the task offloading problem is modeled as a multi-intelligent deep reinforcement learning problem,and a task offloading model based on MultiAgent Deep Reinforcement Learning(MADRL)is established.The Adaptive Genetic Algorithm(AGA)is used to explore the action space of the Deep Deterministic Policy Gradient(DDPG),which effectively solves the problem of slow convergence of the DDPG algorithm in the high-dimensional action space.The simulation results show that the proposed algorithm,AGA-DDPG,saves approximately 61.8%,55%,21%,and 33%of the overall overhead compared to local MEC,random offloading,TD3,and DDPG,respectively.The proposed strategy is potentially important for improving real-time monitoring,big data analysis,and predictive maintenance of offshore wind farm operation and maintenance systems.

关 键 词:Offshore wind MEC task offloading MADRL AGA-DDPG 

分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象