基于机载LiDAR和高分辨率遥感影像融合的农村地籍测绘方法  

Rural cadastral surveying and mapping based on the fusion of airborne LiDAR and high-resolution remote sensing images

在线阅读下载全文

作  者:张海军 盛良成 ZHANG Haijun;SHENG Liangcheng(Zhejiang Zhishu Technology Co.,Ltd.,Huzhou,Zhejiang 313000,China;Zhejiang Jiuhe Geological Ecological Environment Planning and Design Co.,Ltd.,Huzhou,Zhejiang 313000,China)

机构地区:[1]浙江祉数科技有限公司,浙江湖州313000 [2]浙江久核地质生态环境规划设计有限公司,浙江湖州313000

出  处:《测绘技术装备》2024年第3期147-151,共5页Geomatics Technology and Equipment

摘  要:农村地籍测绘是农村土地规划的重要依据,本文提出了基于机载激光雷达(LiDAR)和高分辨率遥感影像融合的农村地籍测绘方法。首先,对农村地籍进行机载LiDAR测绘,采集机载LiDAR点云数据并对其进行分块;其次,对农村地籍高分辨率遥感影像进行分割处理,并将机载LiDAR点云与遥感影像进行配准融合,生成农村地籍测绘图,实现基于机载LiDAR和高分辨率遥感影像融合的农村地籍测绘。经实验证明,使用本文设计的方法开展地籍测绘的面积误差不超过1%,测绘结果与实际结果的余弦相似度符合精度要求,可以精准地反映农村地籍形状、面积和轮廓等特征,具有较高的测绘精度。Rural cadastral surveying and mapping is an important basis for rural land planning.Therefore,a rural cadastral surveying and mapping method based on the fusion of airborne light detection and ranging(LiDAR)and high-resolution remote sensing images is proposed in this paper.Firstly,airborne LiDAR mapping is done for rural cadastral data,airborne LiDAR point cloud data is collected and divided into blocks.Then,high-resolution remote sensing images of rural cadastral are segmented and fused with the registration of airborne LiDAR point clouds and remote sensing images to generate rural cadastral maps,and to complete rural cadastral mapping based on the fusion of airborne LiDAR and high-resolution remote sensing images.It is concluded from the experiments that the area error by the designed method does not exceed 1%,and the cosine similarity between the products of surveying and mapping and those of real measurements can meet the accuracy requirements,it can not ony precisely reflect the characteristics of rural cadastral shape,area,contour,etc.,but also provide accurate surveying and mapping products.

关 键 词:机载激光雷达 高分辨率遥感影像 地籍测绘 点云数据 影像分割 影像配准 

分 类 号:TP751.1[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象