基于SENT协议传感器故障模拟方法研究  

Based on SENT protocol sensor's fault smulation methodresearch

在线阅读下载全文

作  者:杨玉林 薛振涛 杜慧娟 陈志鹏 李龙政 Yang Yulin;Xue Zhentao;Du Huijuan;Chen Zhipeng;Li Longzheng(Weichai Power Co.,Ltd.,Engine Research Institute,Weifang 216000,China)

机构地区:[1]潍柴动力股份有限公司发动机研究院,山东潍坊216000

出  处:《汽车知识》2024年第10期134-137,共4页AUTOMOTIVE KNOWLEDGE

摘  要:随着汽车智能化程度的加深和汽车高智能化控制的实现,需要越来越多高精度、高传输速率的传感器,而且对传感抗干扰能力的要求也更加严苛,因此,基于SENT输出协议的高性能智能传感器由此而生。它既能实现同一个输出端口传输多种物理量信号的功能,以节省数据传输端口、提高传输速率和简化外部的接口电路,又能有效抵抗电磁干扰,保证信号传输的可靠性,所以,基于SENT协议的传感器特性与未来的智能汽车非常契合。但是SENT协议传感器故障自诊断复杂,且传感器信号需借助专用SENT工具模拟,为了满足轻型汽车国六排放标准6b阶段对量产车评估(PVE)测试的要求,本文研究了针对SENT智能传感器不同失效模式下的故障模拟方法,为车辆生产企业提供参考性强的PVE试验故障模拟方法。With the increasing intelligence of automobiles and the realization of intelligent control of automo-biles,more and more high-precision,high-transmission-rate sensors are needed,and the requirements for sens-ing and immunity are even more stringent,so The result is a high-performance intelligent sensor based on the sent output protocol,which enables the transmission of multiple physical amounts of signals on the same output port to save data transmission ports and simplify external interface circuits,as well as to effectively resist elec-tromagnetic interference and guarantee the reliability of signal transmission.So these sensor characteristics based on the sent protocol are very well suited to future smart cars.However,the sent protocol sensor fault self-diagnosis is complex and requires the use of a dedicated sent tool to simulate sensor signals.In order to meet the requirements for the Production Vehicle Evaluation(PVE)test under Stage 6b of the National VI emission standard for light-duty vehicles,this article examines fault simulation methods for SENT smart sensors in differ-ent failure modes.Provides vehicle manufacturers with a reference-sensitive model for testing PVE faults.

关 键 词:SENT协议 传感器 PVE试验 故障模拟 

分 类 号:U463.6[机械工程—车辆工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象