基于非线性规划的选煤厂原煤配煤方法与应用  被引量:1

Method and application for raw coal blending in coal preparation plants based on nonlinear programming

在线阅读下载全文

作  者:刘瀚文 Liu Hanwen(Wuda Coal Processing Co.,Ltd.,Wuda Energy,CHN Energy,Wuhai 016000,China)

机构地区:[1]国能乌海能源乌达煤炭加工有限公司,内蒙古乌海016000

出  处:《能源与环保》2024年第10期250-253,共4页CHINA ENERGY AND ENVIRONMENTAL PROTECTION

摘  要:选煤厂配煤入选过程中原煤品种繁多且煤质差异大,导致配煤方案计算复杂,精煤产率低。针对此问题,提出一种基于非线性规划的选煤厂原煤配煤优化方法,该方法采用分段三次Hermite插值获取各原煤可选性曲线表达式,建立以精煤产率最大为目标,煤质指标、库存为约束的原煤配煤优化模型,针对模型中复杂的非线性项,采用粒子群优化算法求解。为了验证所提方法的有效性,对国内某选煤厂的应用案例进行分析,结果表明,所提方法适用于实际生产,通用性强,可有效克服人工计算方法计算精度低、方案效果差的缺点,并且在提高精煤产率方面有明显优势。In the process of coal blending and washing in coal preparation plants,there are numerous types of raw coal with significant differences in coal quality,which results in complex calculation of coal blending scheme and low clean coal yield.A nonlinear programming based optimization method for raw coal blending in coal preparation plants was proposed to address this issue.The method uses segmented cubic Hermite interpolation to obtain the expression of the selectivity curve for each raw coal,and establishes a raw coal blending optimization model with the goal of maximizing clean coal yield and constraints on coal quality indicators and inventory.For the complex nonlinear terms in the model,particle swarm optimization algorithm is used to solve them.In order to verify the effectiveness of the proposed method,an application case study of a domestic coal preparation plant was analyzed.Results indicated that the proposed method was suitable for practical production and has strong universality,which can effectively overcome the disadvantages of low calculation accuracy and poor effect of coal blending methods based on linear programming and also have significant advantages in improving clean coal yield.

关 键 词:选煤 配煤优化 粒子群算法 可选性曲线 

分 类 号:TQ520.62[化学工程—煤化学工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象