基于埃尔曼神经网络的区域公路网交通适应性分析方法  

Traffic adaptability analysis method of regional highway network based on elman neural network

在线阅读下载全文

作  者:覃薇 姚西桐 Qin Wei;Yao Xitong(Guangxi Communcations Design Group Co.,Ltd.,Nanning Guangxi 530029,China)

机构地区:[1]广西交通设计集团有限公司,广西南宁530029

出  处:《山西建筑》2024年第23期165-168,共4页Shanxi Architecture

摘  要:为分析判定区域公路网交通适应性,从交通安全分析入手,考虑路网交通适应性与路网结构的关系,基于埃尔曼神经网络模型对区域公路网交通适应性进行分析。首先,构建了区域公路网安全度指数,公路网交通适应性的评价以公路网安全度指数作为评价依据,模型初始变量通过对影响区域公路网交通适应性的影响因素进行分析获得。然后,采用粗糙集理论中可辨识矩阵的约简算法,对显著影响区域公路网交通适应性的特征变量进行筛选,筛选出来的变量即作为最终模型的输入变量。最后,建立了基于埃尔曼神经网的区域公路网交通适应性分析判别模型,实现通过高速路网各项指标即可对区域高速公路网的交通适应性进行综合评价。In order to analyze and determine the traffic adaptability of the regional highway network,this article starts with traffic safety analysis,considers the relationship between the traffic adaptability of the road network and the road network structure,and analyzes the traffic adaptability of the regional highway network based on the Elman neural network model.Firstly,this article constructs a regional highway network safety index.The evaluation of highway network traffic adaptability is based on the highway network safety index.The initial variables of the model are obtained by analyzing the influencing factors of regional highway network traffic adaptability.Then,using the reduction algorithm of the discernible matrix in rough set theory,the feature variables that significantly affect the traffic adaptability of the regional highway network are screened,and the screened variables are used as input variables for the final model.Finally,a regional highway network traffic adaptability analysis and discrimination model based on the Elman neural network was established,achieving a comprehensive evaluation of the traffic adaptability of the regional highway network through various indicators of the highway network.

关 键 词:交通安全 公路网交通适应性 神经网络模型 粗糙集理论 路网安全指数 

分 类 号:TU997[建筑科学—市政工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象