Enhancing the resolution of sparse rock property measurements using machine learning and random field theory  被引量:1

在线阅读下载全文

作  者:Jiawei Xie Jinsong Huang Fuxiang Zhang Jixiang He Kaifeng Kang Yunqiang Sun 

机构地区:[1]Discipline of Civil,Surveying and Environmental Engineering,Priority Research Centre for Geotechnical Science and Engineering,The University of Newcastle,Callaghan,NSW,2308,Australia [2]Intercontinental Strait Energy Technology Co.,Ltd.,Beijing,China [3]Institute of Exploration and Development of Xinjiang Oilfield Company,PetroChina,Karamay,China

出  处:《Journal of Rock Mechanics and Geotechnical Engineering》2024年第10期3924-3936,共13页岩石力学与岩土工程学报(英文)

基  金:the Australian Government through the Australian Research Council's Discovery Projects funding scheme(Project DP190101592);the National Natural Science Foundation of China(Grant Nos.41972280 and 52179103).

摘  要:The travel time of rock compressional waves is an essential parameter used for estimating important rock properties,such as porosity,permeability,and lithology.Current methods,like wireline logging tests,provide broad measurements but lack finer resolution.Laboratory-based rock core measurements offer higher resolution but are resource-intensive.Conventionally,wireline logging and rock core measurements have been used independently.This study introduces a novel approach that integrates both data sources.The method leverages the detailed features from limited core data to enhance the resolution of wireline logging data.By combining machine learning with random field theory,the method allows for probabilistic predictions in regions with sparse data sampling.In this framework,12 parameters from wireline tests are used to predict trends in rock core data.The residuals are modeled using random field theory.The outcomes are high-resolution predictions that combine both the predicted trend and the probabilistic realizations of the residual.By utilizing unconditional and conditional random field theories,this method enables unconditional and conditional simulations of the underlying high-resolution rock compressional wave travel time profile and provides uncertainty estimates.This integrated approach optimizes the use of existing core and logging data.Its applicability is confirmed in an oil project in West China.

关 键 词:Wireline logs Core characterization Compressional wave travel time Machine learning Random field theory 

分 类 号:TU4[建筑科学—土工工程] TP181[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象