检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:马洋 陈力[2] MA Yang;CHEN Li(DFH Satellite CoLtd,Beijing 100094,China;Beijing Institute of tracking and Telecommunications Technology,Beijing 100094,China)
机构地区:[1]航天东方红卫星有限公司,北京100094 [2]北京跟踪与通信技术研究所,北京100094
出 处:《测绘科学》2024年第7期1-8,共8页Science of Surveying and Mapping
摘 要:针对传统的最小二乘等四星时差定位算法存在需要初始值和反复迭代等问题,提出将Bancroft算法拓展到四星时差定位系统中,用于GNSS干扰源等非合作目标的定位,并推导了基于Bancroft算法的三维定位公式,给出了正解判别方法以及算法计算流程,能够满足在轨自动化处理的要求。基于四星无源定位系统的定位仿真结果表明:Bancroft方法定位精度与最小二乘方法相当,且具有计算简单可靠、易于星上自主计算的技术优势,特别适用于四星时差定位系统。In response to the problems of requiring initial values and repeated iterations in traditional four star time difference positioning algorithms such as the least squares method,the Bancroft algorithm is proposed to the four star time difference positioning system for the positioning of non cooperative targets such as GNSS interference sources by this paper.A three-dimensional positioning formula based on the Bancroft algorithm is derived,and a forward solution discrimination method and algorithm calculation process are provided,which can meet the requirements of in-orbit processing automatically.The simulation results based on the four-star passive positioning system show that the Bancroft method has the same positioning accuracy as the least squares method,and has the technical advantages of simple and reliable calculation,and easy autonomous calculation in-orbit.It is particularly suitable for four-star time difference positioning systems.
关 键 词:Bancroft算法 无源定位 时差 GNSS干扰源
分 类 号:P228[天文地球—大地测量学与测量工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117