基于孪生物理不可克隆函数和压缩感知的视觉有意义图像加密  

Visually meaningful image encryption based on twin physically unclonable functions and compressed sensing

在线阅读下载全文

作  者:高献伟 郭维剀 程逸煊 袁野 索珠峰 GAO Xianwei;GUO Weikai;CHENG Yixuan;YUAN Ye;SUO Zhufeng(Department of Electronic and Communication Engineering,Beijing Institute of Electronic Science and Technology,Beijing 100070,China;School of Cyberspace Security(School of Cryptology),Hainan University,Haikou Hainan 570228,China)

机构地区:[1]北京电子科技学院电子与通信工程系,北京100070 [2]海南大学网络空间安全学院(密码学院),海南海口570228

出  处:《图学学报》2024年第5期998-1007,共10页Journal of Graphics

基  金:中央高校基本科研业务费资金项目(3282023009);中央高校基本科研业务费资金项目(3282024057)。

摘  要:视觉有意义图像加密方案(VMIE)由于能够将加密图像隐藏在明文图像中而不会引起攻击者的怀疑,受到了研究人员的关注。为了提高系统在容量和安全性方面的性能,提出了许多基于压缩感知的VMIE方案。然而,在这些方案仍难以有效解决密钥管理问题。为此,提出了一种基于孪生物理不可克隆函数和压缩感知的VMIE方案。首先,将完整的密钥种子嵌入到载体图像中,以实现公共网络密钥交换并避免额外的通信消耗。由于密钥种子经过了加密和编码操作,安全性和鲁棒性得到了保证。随后,使用哈希算法迭代扩展密钥种子以生成密钥流。实验结果表明,该方案可以实现安全性、嵌入容量和鲁棒性的平衡。The visually meaningful image encryption(VMIE)scheme has attracted the attention from researchers due to its ability to conceal encrypted images in plaintext images without raising suspicion from attackers.In order to enhance the performance of the system in terms of capacity and security,many VMIE schemes based on compressed sensing have been proposed.However,it remains difficult to solve the key management problem effectively in these schemes.Therefore,a VMIE scheme based on twin physically unclonable functions and compressed sensing was proposed.First,the complete key seed was embedded in the carrier image to achieve public network key exchange while avoiding additional communication consumption.With the key seed being encrypted and encoded,both security and robustness were guaranteed.Subsequently,the key seed was iteratively extended using a hash algorithm to generate the key stream.The experimental results demonstrated that the scheme can achieve the balance of security,embedding capacity,and robustness.

关 键 词:视觉意义图像加密 压缩感知 物理不可克隆函数 哈希链 

分 类 号:TP309.7[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象