Neural Network Optimization of Multivariate KDE Bandwidth for Buoy Spatial Information  

在线阅读下载全文

作  者:XU Liangkun XUE Han JIN Yongxing ZHOU Shibo 徐良坤;薛晗;金永兴;周世波(Merchant Marine College,Shanghai Maritime University,Shanghai,201306,China;College of Navigation,Jimei University,Xiamen,361021,Fujian,China)

机构地区:[1]Merchant Marine College,Shanghai Maritime University,Shanghai,201306,China [2]College of Navigation,Jimei University,Xiamen,361021,Fujian,China

出  处:《Journal of Shanghai Jiaotong university(Science)》2024年第5期773-779,共7页上海交通大学学报(英文版)

基  金:the Natural Science Foundation of Fujian Province(No.2021J01819)。

摘  要:It is one of the responsibilities of the navigation support department to ensure the correct layout position of the light buoy and provide as accurate position information as possible for ship navigation and positioning.If the position deviation of the light buoy is too large to be detected in time,sending wrong navigation assistance information to the ship will directly affect the navigation safety of the ship and increase the pressure on the management department.Therefore,mastering the offset characteristics of light buoy is of great significance for the maintenance of light buoy and improving the navigation aid efficiency of light buoy.Kernel density estimation can intuitively express the spatial and temporal distribution characteristics of buoy position,and indicates the intensive areas of buoy position in the channel.In this paper,in order to speed up deciding the optimal variable width of kernel density estimator,an improved adaptive variable width kernel density estimator is proposed,which reduces the risk of too smooth probability density estimation phenomenon and improves the estimation accuracy of probability density.A fractional recurrent neural network is designed to search the optimal bandwidth of kernel density estimator.It not only achieves faster training speed,but also improves the estimation accuracy of probability density.

关 键 词:kernel density estimation BUOY bandwidth optimization recurrent neural network navigation aid efficiency spatial information 

分 类 号:U644.4[交通运输工程—船舶及航道工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象