检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:石翠翠 周毅 王克俭[1,2] 王超 李会平[2] Shi Cuicui;Zhou Yi;Wang Kejian;Wang Chao;Li Huiping(College of Information Science and Technology,Hebei Agricultural University,Baoding,071001,China;Hebei Provincial Innovation Center of Urban Forest Health Technology,Baoding,071001,China;School of Financial Technology,Hebei Finance University,Baoding,071000,China)
机构地区:[1]河北农业大学信息科学与技术学院,河北保定071001 [2]河北省城市森林健康技术创新中心,河北保定071001 [3]河北金融学院金融科技学院,河北保定071000
出 处:《中国农机化学报》2024年第11期221-227,共7页Journal of Chinese Agricultural Mechanization
基 金:国家自然科学基金(32171799);河北省重点研发计划项目(22327404D);河北省林业和草原局科学计划项目(2001023)。
摘 要:准确预测我国林业虫害的发生情况,对提高森林资源风险管控水平以及林业虫害早期预警具有重要意义。研究雄安新区“千年秀林”中美国白蛾的发生和当时的气象环境因素之间的关系,结合群智能优化算法和深度学习算法,提出一种基于WOA-Bi LSTM-BA算法的林业虫害预测模型。该算法通过WOA迭代优化Bi LSTM的最优参数组合,将注意力机制模块BA引入Bi LSTM网络中,以动态分配权重信息,通过全连接层输出预测结果。将提出模型与传统的BP预测模型、LSTM预测模型、Bi LSTM预测模型进行对比,结果表明,WOA-Bi LSTM-BA模型的效果均优于其他对照预测模型,其决定系数R^(2)达到0.989 1,均方根误差RMSE仅为0.073,平均百分比误差MAPE为0.227 5,平均绝对误差MAE为0.056 4。It is of great significance to accurately predict the occurrence of forest pests in China for improving the level of forest resource risk management and control as well as the early warning of forest pests.The occurrence of forest insect infestation is not only related to temperature and humidity,but also complicated with other meteorological factors.In order to achieve accurate prediction of forest insect infestation,meteorological data and insect infestation data are transformed into a time series prediction problem in this study.In this paper,the relationship between the occurrence of American white moth in the“Millennium Forest”of Xiongan New Area and the meteorological environment at that time was studied,combining swarm intelligent optimization algorithm and deep learning algorithm,a forest pest prediction model based on WOA-BiLSTM-BA algorithm was proposed.Firstly,WOA was used to continuously search for the optimal parameter combination of BiLSTM through iterative optimization to avoid the subjectivity of manual parameter selection and high training cost.Secondly,the Bahdanau Attention module BA was introduced into BiLSTM network to dynamically allocate weight information,and finally the prediction results were output through the fully connected layer.By comparing the proposed model with the traditional BP prediction model,LSTM prediction model and BiLSTM prediction model,the results showed that the effect of WOA-BiLSTM-BA model was better than that of other control prediction models,with R²reaching 0.9891,RMSE only 0.073,MAPE 0.2275 and MAE 0.0564.
关 键 词:林业害虫 美国白蛾 鲸鱼算法 长短时记忆网络 注意力机制
分 类 号:S763[农业科学—森林保护学] TP391[农业科学—林学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.118.210.110