检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Yuechen Luo Yusheng Ci Hexin Zhang Lina Wu
机构地区:[1]School of Transportation Science and Engineering,Harbin Institute of Technology,Harbin,China [2]School of Future Technology,Harbin Institute of Technology,Harbin,China [3]School of Automobile and Traffic Engineering,Heilongjiang Institute of Technology,Harbin,China
出 处:《Digital Transportation and Safety》2024年第3期82-91,共10页数字交通与安全(英文)
基 金:supported by Heilongjiang Provincial Natural Science Foundation of China(LH2023E055);the National Key R&D Program of China(2021YFB2600502).
摘 要:Traffic sign detection in real scenarios is challenging due to their complexity and small size,often preventing existing deep learning models from achieving both high accuracy and real-time performance.An improved YOLOv8 model for traffic sign detection is proposed.Firstly,by adding Coordinate Attention(CA)to the Backbone,the model gains location information,improving detection accuracy.Secondly,we also introduce EIoU to the localization function to address the ambiguity in aspect ratio descriptions by calculating the width-height difference based on CIoU.Additionally,Focal Loss is incorporated to balance sample difficulty,enhancing regression accuracy.Finally,the model,YOLOv8-CE(YOLOv8-Coordinate Attention-EIoU),is tested on the Jetson Nano,achieving real-time street scene detection and outperforming the Raspberry Pi 4B.Experimental results show that YOLOv8-CE excels in various complex scenarios,improving mAP by 2.8%over the original YOLOv8.The model size and computational effort remain similar,with the Jetson Nano achieving an inference time of 96 ms,significantly faster than the Raspberry Pi 4B.
关 键 词:YOLOv8-CE-based REAL-TIME Traffic SIGNS Detection
分 类 号:U49[交通运输工程—交通运输规划与管理] U46[交通运输工程—道路与铁道工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.145.135.237