A YOLOv8-CE-based real-time traffic sign detection and identification method for autonomous vehicles  

在线阅读下载全文

作  者:Yuechen Luo Yusheng Ci Hexin Zhang Lina Wu 

机构地区:[1]School of Transportation Science and Engineering,Harbin Institute of Technology,Harbin,China [2]School of Future Technology,Harbin Institute of Technology,Harbin,China [3]School of Automobile and Traffic Engineering,Heilongjiang Institute of Technology,Harbin,China

出  处:《Digital Transportation and Safety》2024年第3期82-91,共10页数字交通与安全(英文)

基  金:supported by Heilongjiang Provincial Natural Science Foundation of China(LH2023E055);the National Key R&D Program of China(2021YFB2600502).

摘  要:Traffic sign detection in real scenarios is challenging due to their complexity and small size,often preventing existing deep learning models from achieving both high accuracy and real-time performance.An improved YOLOv8 model for traffic sign detection is proposed.Firstly,by adding Coordinate Attention(CA)to the Backbone,the model gains location information,improving detection accuracy.Secondly,we also introduce EIoU to the localization function to address the ambiguity in aspect ratio descriptions by calculating the width-height difference based on CIoU.Additionally,Focal Loss is incorporated to balance sample difficulty,enhancing regression accuracy.Finally,the model,YOLOv8-CE(YOLOv8-Coordinate Attention-EIoU),is tested on the Jetson Nano,achieving real-time street scene detection and outperforming the Raspberry Pi 4B.Experimental results show that YOLOv8-CE excels in various complex scenarios,improving mAP by 2.8%over the original YOLOv8.The model size and computational effort remain similar,with the Jetson Nano achieving an inference time of 96 ms,significantly faster than the Raspberry Pi 4B.

关 键 词:YOLOv8-CE-based REAL-TIME Traffic SIGNS Detection 

分 类 号:U49[交通运输工程—交通运输规划与管理] U46[交通运输工程—道路与铁道工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象