Recognition of Bird Species of Yunnan Based on Improved ResNet18  

在线阅读下载全文

作  者:Wei Yang Ivy Kim D.Machica 

机构地区:[1]College of Information and Computing,University of Southeastern Philippines,Davao City,8000,Philippines [2]College of Big Data,Baoshan University,Baoshan,678000,China

出  处:《Intelligent Automation & Soft Computing》2024年第5期889-905,共17页智能自动化与软计算(英文)

摘  要:Birds play a crucial role in maintaining ecological balance,making bird recognition technology a hot research topic.Traditional recognition methods have not achieved high accuracy in bird identification.This paper proposes an improved ResNet18 model to enhance the recognition rate of local bird species in Yunnan.First,a dataset containing five species of local birds in Yunnan was established:C.amherstiae,T.caboti,Syrmaticus humiae,Polyplectron bicalcaratum,and Pucrasia macrolopha.The improved ResNet18 model was then used to identify these species.This method replaces traditional convolution with depth wise separable convolution and introduces an SE(Squeeze and Excitation)module to improve the model’s efficiency and accuracy.Compared to the traditional ResNet18 model,this improved model excels in implementing a wild bird classification solution,significantly reducing computational overhead and accelerating model training using low-power,lightweight hardware.Experimental analysis shows that the improved ResNet18 model achieved an accuracy of 98.57%,compared to 98.26%for the traditional Residual Network 18 layers(ResNet18)model.

关 键 词:Bird species recognition ResNet18 depth-wise separable convolutions 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象