多孔碳/硫化钼复合材料的构筑及其对类芬顿降解布洛芬反应的增强作用  被引量:1

Constructing porous carbon/molybdenum sulfide composite for enhanced Fenton-like degradation of ibuprofen

在线阅读下载全文

作  者:邹琦 邱全洋 李治国 黄登雄 王歆伟 王敖鑫 苏伟 张灿 钟丽娴 彭瑞昊 吴尧尧 ZOU Qi;QIU Quanyang;LI Zhiguo;HUANG Dengxiong;WANG Xinwei;WANG Aoxin;SU Wei;ZHANG Can;ZHONG Lixian;PENG Ruihao;WU Yaoyao(Jiangxi Provincial Key Laboratory of Environmental Pollution Prevention and Control in Mining and Metallurgy,Ganzhou 341000,China;School of Resources and Environmental Engineering,Jiangxi University of Science and Technology,Ganzhou 341000,China;Yichun Lithium Battery New Energy Industry Research Institute,Jiangxi University of Science and Technology,Yichun 330600,China)

机构地区:[1]矿冶环境污染防控江西省重点实验室,赣州341000 [2]江西理工大学资源与环境工程学院,赣州341000 [3]江西理工大学宜春锂电新能源产业研究院,宜春330600

出  处:《江西冶金》2024年第5期395-402,共8页Jiangxi Metallurgy

基  金:矿冶环境污染防控江西省重点实验室项目(2023SSY01071);江西理工大学高层次人才科研专项(205200100688)。

摘  要:在类芬顿反应中存在Fe(Ⅲ)/Fe(Ⅱ)氧化还原电子对循环速率慢,以及催化剂回收困难等问题。本研究采用水热-煅烧法合成了多孔碳(Fe-N-C)负载固定化的硫化钼碳布复合材料(Fe-NC/MoS_(2)NS),并将其应用于非均相类芬顿反应以降解水体中的布洛芬(IBU)。通过场发射扫描电子显微镜/透射电子显微镜、激光显微拉曼光谱仪、热重分析仪等表征技术,研究了此复合材料的物相、化学组成和热稳定性,并探究了不同材料和pH值对降解效果的影响,以及材料的降解普适性与稳定性,并进一步阐明了其催化降解机理。结果表明,Fe-N-C/MoS_(2)NS的催化降解效果优于Fe-N-C和MoS_(2)NS。在初始pH值为3、H2O2初始浓度为5.0 mmol/L的条件下,反应60 min后可实现对IBU的完全降解。此体系对降解药物类有机污染物表现出良好的普适性,并且经历4次循环降解实验后,降解效率仍能保持在90%以上,表明固定化后的复合材料具有优异的催化稳定性。自由基探针和电子顺磁共振波谱的研究结果表明,羟基自由基和单线态氧是Fe-N-C/MoS_(2)NS体系降解IBU的主要活性物种,同时MoS_(2)NS能有效促进Fe(Ⅲ)/Fe(Ⅱ)氧化还原电子对的循环转化,有效解决了传统芬顿工艺中的痛点问题,为高级氧化技术在水处理中的应用提供了新思路。In the Fenton-like reaction,the slow cyclic rate of Fe(Ⅲ)/Fe(Ⅱ)redox electron pairs and the complexity of catalyst recovery present significant challenges.This investigation synthesized a porous carbon(Fe-N-C)supported molybdenum sulfide carbon cloth composite material(Fe-N-C/MoS_(2) NS)via a hydrothermal-calcination approach,subsequently applying it to the heterogeneous Fenton-like reaction for ibuprofen(IBU)degradation in aquatic environments.The composite's phase,chemical composition,and thermal stability were scrutinized employing field emission scanning electron microscopy,transmission electron microscopy,laser micro-Raman spectroscopy,and thermogravimetric analysis.We investigated the influence of diverse materials and pH values on degradation efficiency,as well as the general applicability and robustness of the degradation process.Moreover,we elucidated the catalytic degradation mechanism.The findings revealed that Fe-N-C/MoS_(2) NS outperformed Fe-N-C and MoS_(2) NS,exhibiting superior catalytic degradation capabilities.Complete IBU degradation was achieved within 60 min under pH=3 and a H2O2 concentration of 5.0 mmol/L.The system exhibited broad efficacy in degrading pharmaceutical pollutants,maintaining degradation efficiency above 90%after four cycles,underscoring exceptional catalytic stability.Free radical probes and electron paramagnetic resonance spectroscopy pinpointed hydroxyl radicals and singlet oxygen as primary agents in IBU degradation within the Fe-N-C/MoS_(2) NS system.Furthermore,MoS_(2) NS effectively facilitated the redox transformation of Fe(Ⅲ)/Fe(Ⅱ)electron pairs,addressing limitations inherent in conventional Fenton systems and offering novel perspectives for advancing oxidation technologies in water treatment.

关 键 词:碳基材料 硫化钼 布洛芬 类芬顿反应 难降解有机污染物 

分 类 号:X703[环境科学与工程—环境工程] TG146.45[一般工业技术—材料科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象