Augmenting Internet of Medical Things Security:Deep Ensemble Integration and Methodological Fusion  

在线阅读下载全文

作  者:Hamad Naeem Amjad Alsirhani Faeiz MAlserhani Farhan Ullah Ondrej Krejcar 

机构地区:[1]Faculty of Informatics and Management,Center for Basic and Applied Research,University of Hradec Kralove,Hradec Kralove,50003,Czech Republic [2]Department of Computer Science,College of Computer and Information Sciences,Jouf University,Al Jouf,72388,Saudi Arabia [3]Department of Computer Engineering&Networks,College of Computer and Information Sciences,Jouf University,Al Jouf,72388,Saudi Arabia [4]Cybersecurity Center,Prince Mohammad Bin Fahd University,Al Jawharah,Khobar,Dhahran,34754,Saudi Arabia

出  处:《Computer Modeling in Engineering & Sciences》2024年第12期2185-2223,共39页工程与科学中的计算机建模(英文)

基  金:supported by the Deanship of Graduate Studies and Scientific Research at Jouf University under grant No.DGSSR-2023-02-02116.

摘  要:When it comes to smart healthcare business systems,network-based intrusion detection systems are crucial for protecting the system and its networks from malicious network assaults.To protect IoMT devices and networks in healthcare and medical settings,our proposed model serves as a powerful tool for monitoring IoMT networks.This study presents a robust methodology for intrusion detection in Internet of Medical Things(IoMT)environments,integrating data augmentation,feature selection,and ensemble learning to effectively handle IoMT data complexity.Following rigorous preprocessing,including feature extraction,correlation removal,and Recursive Feature Elimi-nation(RFE),selected features are standardized and reshaped for deep learning models.Augmentation using the BAT algorithm enhances dataset variability.Three deep learning models,Transformer-based neural networks,self-attention Deep Convolutional Neural Networks(DCNNs),and Long Short-Term Memory(LSTM)networks,are trained to capture diverse data aspects.Their predictions form a meta-feature set for a subsequent meta-learner,which combines model strengths.Conventional classifiers validate meta-learner features for broad algorithm suitability.This comprehensive method demonstrates high accuracy and robustness in IoMT intrusion detection.Evaluations were conducted using two datasets:the publicly available WUSTL-EHMS-2020 dataset,which contains two distinct categories,and the CICIoMT2024 dataset,encompassing sixteen categories.Experimental results showcase the method’s exceptional performance,achieving optimal scores of 100%on the WUSTL-EHMS-2020 dataset and 99%on the CICIoMT2024.

关 键 词:Cyberattack ensemble learning feature selection intrusion detection smart cities machine learning BAT augmentation 

分 类 号:TP393.08[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象